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PREFACE
This compendium describes how Monte Carlo methods can be applied to simulate technical systems.
The description covers background on probability theory and random number generation as well as the
thoery and practice of efficient Monte Carlo simulations. The core of the compendium is based on lec-
tures that have been given at KTH for several years; however, the presentation here also includes more
explanatory texts and exercises with solutions.

I would like to give a warm thank you to colleagues and students who have helped improve the con-
tents of this compendium by asking questions, pointing out errors and suggesting additional topics.

Stockholm
August 2015 Mikael Amelin
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Chapter 1

INTRODUCTION
Monte Carlo methods refers to a class of methods to solve mathematical problems using random sam-
ples. A straightforward example is the computation of the expectation value of a random variable;
instead of computing the expectation value according to the definition (which may involve solving com-
plex integrals) we observe the behaviour of the random variable, i.e., we collect samples, and estimate
its expactation value based on these samples. However, Monte Carlo methods may also be used for solv-
ing deterministic problems. This might seem odd at a first glance, but the idea is simply to find a ran-
dom variable, the statistic properties of which is depending on the solution to the deterministic prob-
lem. An example of this would be an opinion poll. Assume that there is going to be an election. If we
ignore that people may change their preferences over time and consider just one specific point of time
then the share of voters who are planning to vote for a certain candidate is deterministic. However, in
order to compute the true value of this share, we would have to ask all voters which candidate they
favour. An alternative would be to ask a limited number of randomly chosen voters and use these sam-
ples to estimate the share of votes the candidate will obtain.

This compendium will describe how Monte Carlo methods can be used for simulation of various tech-
nical systems. The compendium includes many mathematical definitions and formulae, but it should be
emphasised that this is not a mathematical textbook. The focus of the presentation will be how Monte
Carlo methods can be applied to solve engineering problems; hence, the mathematics should be seen as
a tool and not a topic in itself. This means that for example mathematical proofs will only be provided in
order to improve the understanding of the described methods, and some mathematical details might be
ignored.

1.1 Brief History

The phrase “Monte Carlo methods” was coined in the beginning of the 20th century, and refers to the
famous casino in Monaco1—a place where random samples indeed play an important role. However,
the origin of Monte Carlo methods is older than the casino. 

To be added: History of probability theory…
To be added: Bernouille, Poisson and the law of large numbers...
To be added: Buffon’s needle
To be added: Modern development...

1.2 Problem Definition

This entire compendium is focusing on methods for simulation of systems on one specific format. (This
might seem as a large limitation, but the reader will soon see that a wide range of systems fit into this
format.) An overview of this format is given in figure 1.1. The studied systems are modelled by a set of

1. It has been said that if Monte Carlo methods had been first explored today, they would have been
referred to as “Las Vegas methods”.
1.1 Brief History 1



Chapter 1 Introduction
random input variables, which we at this point simply collect into a vector, Y. The probability distribu-
tion of these inputs must be known. We also have and a set of output variables, which we also collect
into a vector, X. As these outputs are depending on the random inputs, they must be random variables
as well; however, the probability distribution of the outputs is not known—in fact, the objective of sim-
ulating the system is to determine the behaviour of the outputs. Finally, we have a mathematical model
of the system, which determines how the values of the outputs are calculated given the values of the
input variables. We denote the mathematical model as a function g, such that X = g(Y). This function
defines how the values of the outputs are computed given the values of the input values. In this com-
pendium, a set of random values for each input will be referred to as a scenario.

Example 1.1. To be added: Example of a model expressed explicitly...

To be added: Discussion of model constants…
In example 1.1 it was possible to write the output as an explicit function of the input. This is however a

special case, and most models g(Y) will be defined implicitly and may require several steps before the
output values are computed. A typical example would be there the output values depend on the solution
to an optimisation problem, and also require a few other calculations to obtain the final results. for
example from the solution to an optimisation problem, as illustrated in the next example:

Example 1.2 (simple two-area power system). Consider a power system divided in two
areas: a generation centre and a load centre. The generation centre is dominated by large
renewable power plants, but there is also a small local load, whereas the load centre has
most of the load in the system, but there is also some thermal power plants. The renewable
power plants in the generation centre are assumed to have negligible variable operation
costs and the risk of outages is also negligible. Moreover, the capacity of the renewable
power plants is larger than the maximal local load; hence, the generation centre always has
excess power to export to the load centre. However, the interconnection between the areas
has a limited capacity and there is a risk of outages. There are also electrical losses on the
interconnection; these losses are proportional to the square of the power injected into the
interconnection. The variable costs of the thermal power plants in the load centre is
assumed to be directly proportional to the power output (i.e., start-up costs and ramp rates
etc. may be neglected) and there is a risk of outages in these units. Finally, the load in the
two areas is varying randomly. It can be assumed that the load is described by one proba-
bility distribution for the total load of the system, and another probability distribution for
the share of the load that is located in the main load centre.

The system is operated in such a manner that the first priority is to avoid load shedding
(i.e., when load has to be disconnected because there is not sufficient generation capacity
available in the system) and the second priority is to minimise the generation costs. Volt-
age and frequency control may be neglected. The objective of simulating this power system
is to determine the total operation cost and the risk of load shedding. Formulate a model of
this kind of power system and show how the values of the outputs are calculated given the
values of the inputs.

Solution: Start by introducing symbols for the inputs and outputs of this simulation
problem:

Inputs

The inputs are the random variables of the model. In this case we have random outages in
thermal power plants and the interconnection between the areas, as well as random loads
in the two areas:

Figure 1.1 The simulation problem considered in this compendium. 

Inputs, Y Model,
g(Y)

Outputs, X
2 1.2 Problem Definition



Chapter 1 Introduction
c = share of the total load that is located in the main load centre,
Dtot = total load in the system,

= available generation capacity in thermal plants g,
= available transmission capacity on the interconnection between the two areas.

Outputs

We are actually only interested in two outputs (the total operation cost and whether load
shedding occurs or not), but in order to compute these two values, we will need some par-
tial results. Since the partial results also depend on the values of the random inputs, they
will in practice also be outputs (i.e., random variables with unknown probability distribu-
tions depending on the probability distributions of the inputs). In this case, the model will
be generating the following outputs:

D1 = load in the main load centre,
D2 = load in the generation centre,
Gg = generation in thermal power plant g,
H = generation in the renewable power plants,

LOLO = loss of load occasion (binary variable equal to 1 if load shedding is necessary and 
0 otherwise),

P = transmission from the generation centre to the load centre,
TOC = total operation cost,

U = unserved load,

where LOLO and TOC are the outputs that we want to study.

Model constants

In order to formulate the mathematical model, we are going to need some additional val-
ues:

Gg = variable operation cost of thermal power plant g,
U = penalty cost for unserved load,
L = loss coefficient for the interconnection between the areas,

= available generation capacity in the renewable power plants.

To be added: Comment the penalty cosst for unserved load…

Mathematical model

Now we can formulate the calculations necessary to compute the values of the outputs for
a scenario. First, we need to compute the local load in each area:

D1 = c·Dtot, (1.1a)

D2 = (1 – c)·Dtot. (1.1b)

The next step is to determine how the system will be operated. This can be formulated as
an optimisation problem, where the objective function (1.2a) states that the costs of the
system should be minimised, the constraints (1.2b), (1.2c) state that there should be bal-
ance between generation, load and import in the load centre and between generation, load
an export in the generation centre and the limits (1.2d)–(1.2g) state that generation and
transmission may not exceed the available capacity.

minimise (1.2a)

subject to (1.2b)

H = D2 + P, (1.2c)

0  Gg   g, (1.2d)

Gg
P

H

GgGg UU,+
g


Gg
g
 P P2–+ D1 U,–=

Gg,
1.2 Problem Definition 3



Chapter 1 Introduction
0  H (1.2e)

0  P (1.2f)

0  U. (1.2g)

To be added: Explanation of the model and description of how the problem can be solved
using a simple algorithm…

Finally, once it has been determined how the power system is operated, the two main out-
puts can be computed from the solution to the optimisation problem:

LOLO = (1.3a)

TOC = (1.3b)

It is important to notice that the model g is deterministic! Hence, if we have two scenarios, y1 and y2,
producing two sets of output values, x1 = g(y1) and x2 = g(y2) then if y1 = y2 we will get that x1 = x2. If this
property is not fulfilled, the model is missing inputs and should be reformulated, as in the following
example:

Example 1.3. To be added: Example of a model which is missing an input value (power
grid, where the reliability is depending on the sucess of reclosing breakers after a failure)
...

Many of the examples in the following chapters of this compendium will be based on an system based
on the model from example 1.1. Additional details on this example system are collected in appendix B.
Here, we will just introduce the system and identify the model constants:

Example 1.4 (Akabuga District). Akabuga is a small town in East Africa. The town is not
connected to the national grid, but has a local system of its own. The local grid is supplied
by a 350 kW hydro power plant in Ekyaalo. The variable costs of the hydro power plant are
negligible and it can be considered to be 100% reliable. There is a 11 kV transmission line
between Ekyaalo and Akabuga. This line has a maximal capacity of 300 kW, the reliability
is 99% and the losses of the line are equal to 5·10–5P2, where P is the power injected on the
Ekyaalo side. In Akabuga proper, there are two diesel generator sets. The first unit has
200 kW capacity, the variable costs are 10 ¤/kWh and the availability is 90%. The second
unit has 150 kW capacity, the variable costs are 12 ¤/kWh and the availability is 80%.

The total load of the system is varying between 200 and 600 kW according to the probabili-
ties listed in table 1.1. It is 50% probability that 85% of the total load is in Akabuga and 50%
probability that 90% of the total load is in Akabuga.

State the values of the model constants for a simulation of Akabuga District.

Solution: The model constants are the inputs that do not change value between scenar-
ios. From the description above, we can identify the following model constants:

G1 = variable operation cost of the large diesel generator set = 10,
G1 = variable operation cost of the small diesel generator set = 12,
L = loss coefficient for the 11 kV transmission line = 5·10–5,

Table 1.1 Probabilities of different load levels in Akabuga District.

Total load [kW] Probability [¤]

200 20

300 40

400 25

500 10

600 5

H,

P,

0

1

 if U 0,=

if U 0,

GgGg.
g


4 1.2 Problem Definition
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= available generation capacity in the hydro power plant.

The capacity of diesel generator sets and the transmission line which are mentioned above
are also not changing between scenarios. However, due to the risk of outages, the available
capacity (which is what needs to be considered in the simulation) is a random variable;
hence, the maximal capacity will appear in the probability distribution of the inputs (cf
example 2.2). 

1.3 Notation

Before we start investigating the application of Monte Carlo methods to solve the simulation problem
described above, it might be useful to introduce a general notation, which will be used throughout this
compendium. Once the reader is familiar with this notation, it will be more straightforward to interpret
the mathematical expression appearing in the following chapters.

• Random variables. All random variables are denoted by upper-case Latin letters; usually just
one single letter, for example Y or X, but sometimes several letters, such as LOLO and TOC in
example 1.2.

• Samples. An observation of a random variable (i.e., a sample) is denoted by the lower-case of
the symbol used for the random variable itself, for example y or x. In most cases, we also use an
index in order to separate different samples from each other, i.e., yi or xi.

• Populations. A population is denoted by the same upper-case Latin letter as the corresponding
random variable, but using a script font, for example Y or X. The value of the i:th unit in a popu-
lation is denoted by the lower-case symbol used for population itself, indexed by i, for example
yi or xi.

• Probability distributions. Probability distributions are denoted by Latin f in upper or lower
case (depending on interpretation2) and an index showing to which random variable the distri-
bution is associated, for example fY or FX. The idea of the index is to tell different probability
distributions apart from each other. 

• Statistical properties. Key statistical properties of a probability distribution are denoted by
lower-case Greek letters and an index showing to which random variable the statistical proper-
ty is associated, for example Y or X. The idea of the index is to tell different probability distri-
butions apart from each other.

• Estimates. Estimates of key statistical properties for a probability distribution are denoted by
upper or lower case (depending on interpretation3) Latin counterpart of the symbol used for
the statistical property itself and an index showing to which random variable the statistical
property is associated, for example MX or sX. The idea of the index is to tell different probability
distributions apart from each other.

2. Cf. section 2.1.
3. Cf. section 4.1.

H

1.3 Notation 5
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Chapter 2

RANDOM VARIABLES
As the idea of Monte Carlo simulation is to estimate values using random observations, it is natural that
a basic understanding of probability theory is necessary. This chapter summarises the probability the-
ory that will be used in the remainder of the compendium. The focus of the presentation will be on ran-
dom variables.

2.1 Probability Distributions

Intuitively, we may understand a random variable exactly as the name suggests, i.e., a variable, the
value of which is varying according to some random pattern. This pattern, which characterises the
behaviour of the random variable is referred to as its probability distribution. There is an infinite num-
ber of possible probability distributions; however, some common classes of distributions have been
identified and named. A brief overview can be found in appendix A.

2.1.1 Populations

The formal mathematical definition of a random variable is however slightly more complex, and will
therefore not be discussed here.

For a discussion of sampling and Monte Carlo simulation, a useful interpretation of random variables
is to consider a random variable to be associated with a certain population, which we define as follows:

Definition 2.1. The random variable X corresponds to a population, X, which is a set with N
members (which are referred to as “units”). Each unit has a value, xi, which may be multi-
dimensional. The values of the units in X do not have to be unique, but they should include
all possible outcomes of the random variable X and the relative occurrence of a certain
value should be proportional to the probability of the corresponding outcome.

Example 2.1. State the population corresponding to the following random variables:

a) D, which represents the result of throwing a normal six-sided dice.

b) To be added…

Solution: 

a) D = {1, 2, 3, 4, 5, 6}

b) To be added…

Based on this definition we can distinguish between some main categories of populations (and conse-
quently between different categories of random variables). First we can differentiate between variables
where the outcome can only belong to specific, discrete values or if the outcome can be found in contin-
uous intervals:

Definition 2.2. If the population is finite or countable infinite, the random variable is dis-
2.1 Probability Distributions 7



Chapter 2 Random Variables
crete; otherwise, it is continuous.

To be added: Examples…
As pointed out in definition 2.1, the units in a population may have more than one value. If each unit

has one value, the population directly corresponds to one random variable. However, if the units have
more than one value, we may consider each value to represent a separate random variable, which then
have a joint probability distribution.

Definition 2.3. If each unit in the population is associated to a single value, the probability
distribution is univariate; otherwise it is multi-variate.

To be added: Examples…
Finally, we can also study how the values of the units in a population is varying:

Definition 2.4. If all units in univariate population have the same or almost the same
value, the population is said to be homogeneous.

Definition 2.5. If most units in univariate population have the different values, the popu-
lation is said to be heterogeneous.

Definition 2.6. If the majority of the units in a univariate population have the same value
(these units are referred to as the conformist units), the population is said to be duogene-
ous. The remainder of the population (which is referred to as the diverging units) may
either be homogeneous (i.e, all diverging units have the same value) or heterogeneous (i.e.,
the diverging units have different values).

To be added: Examples…
It may be noted that the difference between a homogeneous and a heterogeneous population may

depend on the situation. 
To be added: Example where the population is homogeneous for a rough estimate, whereas it can be

considered heterogeneous if a precise estimate is required.

2.1.2 Other Common Definitions of Probability Distributions

There are several ways to represent probability distributions mathematically. Populations are often
useful for describing and understanding Monte Carlo simulation, but other definitions can also be use-
ful in some cases, and are also frequently applied in other fields of statistical analysis and stochastic
methods. Hence, it is important to be familiar with the following definitions:

Definition 2.7. The probability that an observation of a univariate, discrete random varia-
ble X is equal to the value x is given by the frequency function, fX(x), i.e., 

P(X = x) = fX(x).

If we compare the definition of a frequency function to a population, we see that the value of the fre-
quency function is equal to the number of units in the population having the value x compared to the
total size of the population, i.e.,

fX(x) = (2.1)

A similar definition is used for continuous random variables. However, as the probability of getting
exactly the value x is infinitesimal, the function fX(x) is referred to as a density function1 and represents
the probability that an observation is within a given range:

Definition 2.8. The probability that an observation of a univariate, continuous random
variable X belongs to a set X is given by the density function, fX(x), i.e., 

P(X  X) = 

By definition, all units in a population has a value. This means that frequency and density functions

1. This denomination is sometimes also used for discrete random variables; a frequency function can be
considered as a special type of density function.

NX x=

N
--------------- .

fX x  x.d
X


8 2.1 Probability Distributions



Chapter 2 Random Variables
must fulfil the following:

 (discrete random variable), (2.2a)

 (continuous random variable). (2.2b)

An alternative to density functions is to study distribution functions:

Definition 2.9. The probability that an observation of a univariate, discrete random varia-
ble X is less than or equal to the value x is given by the distribution function, FX(x), i.e., 

P(X  x) = FX(x).

From definition 2.9 it follows that FX(x) must be an increasing function,2 that FX(x)  0 if x  – and
that FX(x)  1 if x  +. Moreover, comparing definitions 2.8 and 2.9, we see that

P(X  x) = FX(x) = (2.3)

i.e., the distribution function is the primitive function of the density function. (This is the reason for
choosing the symbols F and f for distribution function and density function analogous to the notation
used in calculus.)

Finally, in some applications it is preferable to consider a duration curve instead of the distribution
function. (An example is simulation of electricity markets, cf. appendix C.) Duration curves can be
designed in different manners, but the one most suitable for probability analysis is the normalised
inverse duration curve, which we in this compendium will refer to simply as a duration curve.

Definition 2.10. The probability that an observation of a univariate, discrete random vari-
able X is larger than the value x is given by the duration curve,  i.e., 

P(X  x) = 

In a similar way as for distribution functions, we can notice that  must be an increasing function,
that   1 if x  –, that   0 if x  + and that 

P(X  x) =  = 1 – FX(x) = (2.4)

To be added: Comments on multivariate distributions…
Let us now express the probability distributions of the inputs in the Akabuga District example using

the definitions above:

Example 2.2 (Akabuga District). Akabuga is a small town in East Africa. The town is not
connected to the national grid, but has a local system of its own. The local grid is supplied
by a 350 kW hydro power plant in Ekyaalo. The variable costs of the hydro power plant are
negligible and it can be considered to be 100% reliable. There is a 11 kV transmission line
between Ekyaalo and Akabuga. This line has a maximal capacity of 300 kW, the reliability
is 99% and the losses of the line are equal to 5·10–5P2, where P is the power injected on the
Ekyaalo side. In Akabuga proper, there are two diesel generator sets. The first unit has
200 kW capacity, the variable costs are 10 ¤/kWh and the availability is 90%. The second
unit has 150 kW capacity, the variable costs are 12 ¤/kWh and the availability is 80%.

The total load of the system is varying between 200 and 600 kW according to the probabili-
ties listed in table 2.1. It is 50% probability that 85% of the total load is in Akabuga and 50%
probability that 90% of the total load is in Akabuga.

2. The probability that a random variable is less than or equal to a cannot be smaller than the probability
that a random variable is less than or equal to b if b > a.

fX x 
x –=



 1=

fX x  xd

–



 1=

fX x  x,d

–

x



F̃X x ,

F̃X x .

F̃X x 
F̃X x  F̃X x 

F̃X x  fX x  x.d

x





2.1 Probability Distributions 9
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State the frequency functions of the inputs in a simulation of Akabuga District. 

Solution: The frequency function states the probability of a certain outcome; thus, from
the description above, we can identify the following frequency functions:

= available generation capacity in the large diesel generator set = 

=

= available generation capacity in the large diesel generator set = 

=

= available generation capacity in the large diesel generator set = 

=

= total demand =

fC = the share of the total demand located in Akabuga =  

2.2 Statistical Properties

The probability distribution of a random variable is a complete description of its behaviour. However,
in many cases we do not need such detailed information, but would prefer some key values that
describe the main characteristics of the random variable. Therefore, different statistical measures have
been introduced. The most important statistical measures are defined below.

Expectation Value

The expectation value of random variable is a the mean of all possible outcomes weighted by probabil-
ity:

Definition 2.11. The expectation value of a random variable X is given by

 (population),

Table 2.1 Total load in Akabuga District.

Load [kW] 200 300 400 500 600

Probability [%] 20 40 25 10 5

f
G1

0.1

0.9

0



 x 0,=

x 200,=

all other x,

f
G2

0.2

0.8

0



 x 0,=

x 150,=

all other x,

f
P

0.01

0.99

0



 x 0,=

x 300,=

all other x,

fDtot

0.2

0.4

0.25

0.1

0.05

0







 x 200,=

x 300,=

x 400,=

x 500,=

x 600,=

all other x,

0.5

0.5

0



 x 0.85,=

x 0.9,=

all other x.

E X  1
N
---- xi

i 1=

N

=
10 2.2 Statistical Properties
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 (discrete random variable),

 (continuous random variable).

As seen above, the definition varies slightly depending on whether the probability distribution is
expressed as a population or using a density function. We may notice that it is the expression corre-
sponding to the weighting according to probability that varies; hence, the following parts in the defini-
tions above fulfil the same purpose:

   

As we will see below, this pattern will appear also in the other definitions of statistical properties.
The practical interpretation of the expectation value is that if we have a set of samples of a random

variable, and this set is distributed exactly according to the probability distribution, then the expecta-
tion value is the mean of those samples. We can intuitively understand that if we have a large number of
samples, it is quite likely that the samples will be distributed almost according to the probability distri-
bution of the variable; hence, the mean of a large number of samples should be approximately equal to
the expectation value. (In fact, this is the very foundation of simple sampling, as we will see in
chapter 4).

Although most random variables have a well-defined expectation value, one should be aware that
there is no guarantee that this is the case. This might seem strange, and is best understood by an exam-
ple:

Example 2.3 (The S:t Petersburg paradox). Consider a game where a player pays a fixed
fee to participate. The player then tosses a coin until a head appears. If a head appears in
the j:th trial, the payout of the game is 2j. 

To be added: Expected payout of the game…

Variance and Standard Deviation

The variance of a random variable describes how much a random variable is varying around the expec-
tation value. 

To be added: Figure

Definition 2.12. The variance of a random variable X is given by

Var[X] = E[(X – E[X])2] = E[X2] – (E[X])2 (general definition),

 (population),

 (discrete random variable),

 (continuous random variable).

A disadvantage with variance is that the unit of Var[X] is the square of the unit of X. For example, if X
is the unserved load in a power system and expressed in kWh/h then the variance of X is expressed in
(kWh/h)2. In many cases, it is more convenient to have a measure of the variation that is directly com-
parable to the variable itself and the expectation value. Therefore, the notion of standard deviation has
been introduced:

Definition 2.13. The standard deviation of a random variable X is given by

X = 

E X  fX x x
x X
=

E X  fX x x xd
x X
=

1
N
----

i 1=

N

 fX x 
x X
 fX x … xd

x X
 .

Var X  1
N
---- xi E X – 2

i 1=

N

=

Var X  fX x  x E X – 2

x X
=

Var X  fX x  x E X – 2 xd
x X
=

Var X .
2.2 Statistical Properties 11
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Covariance and Correlation Coefficient

The covariance describes how different random variables in a multivariate distribution are interacting
with each other:

Definition 2.14. The covariance of two random variables X and Y is given by

Cov[X, Y] = E[(X – E[X])(Y – E[Y])] = E[XY] – E[X]E[Y].

Switching place between X and Y in definition 2.14 does not change the result, i.e., 

Cov[X, Y] = Cov[Y, X]. (2.5)

We can also observe that the covariance between a variable and itself is equal to the variance of the var-
iable, i.e., 

Cov[X, X] = Var[X]. (2.6)

To be added: Discussion of covariance matrix…

Definition 2.15. A covariance matrix shows the covariances between all random variables
in a multivariate probability distribution:

X = 

To be added: Discussion of correlation coefficient…

Definition 2.16. The correlation factor of two random variables X and Y is given by

Example 2.4 (load in Akabuga and Ekyaalo). Consider Akabuga District (cf. exam-
ple 1.4). What is the correlation coefficient between the load in Akabuga and Ekyaalo?

Solution: Let D1 and D2 denote the load in Akabuga and Ekyaalo respectively. These ran-
dom variables are direct functions of the total load, Dtot and the share of the total load that
is located in Akabuga, C, which have known probability distributions (see example 2.2).
All possible results are listed in table 2.2. From the table, we can now compute 

E[D1D2] = 13 811.25,

E[D1] = 297.5,

E[D2] = 42.5,

which results in

Cov[D1, D2] = E[D1D2] – E[D1]E[D2] = 13 811.25 – 297.5 · 42.5 = 1 167.5.

To compute the correlation coefficient we also need the variances of the area loads, which
according to the definition and the probabilities listed in table 2.2 yields

Var[D1] = 8 807.5,

Var[D2] = 257.5.

Now the correlation coefficient is given by

 =   0.78,

i.e., a rather strong positive correlation.

…Var X1  Cov X1 X2  Cov X1 Xk 

Cov X2 X1  Var X2 

Cov Xk X1  Var Xk 

.… …

X Y
Cov X Y 

Var X Var Y 
----------------------------------------- .=

D1 D2
Cov D1 D2 

Var D1 Var D2 
------------------------------------------------=

1 167.5

8 807.5 257.5
---------------------------------------
12 2.2 Statistical Properties
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To be added: Discussion of independent random variables…

Definition 2.17. X and Y are independent random variables if it holds for each x and y that

fX, Y(x, y) = fX(x)fY(y)  FX, Y(x, y) = FX(x)FY(y).

Theorem 2.18. If X and Y are independent then

E[XY] = E[X]E[Y].

Corollary 2.19. If X and Y are independent then they are also uncorralated.

It should be noted that the reverse of corollary 2.19 does not hold, i.e., if two variables are uncorrelated
we cannot conclude that they are independent! This is because the correlation is only a measure of the
linear dependence of two random variables; hence, if there is a purely non-linear relation between two
random variables, they will still be uncorrelated. Compare the following two examples:

Example 2.5. Assume that Y has the frequency function

fX(x) = 

and assume that X = Y2. Are X and Y uncorrelated?

Solution: We start by computing expectation values according to definition 2.11:

E[XY] =  = 20,

E[X] =  = 6,

E[X] =  = 2.

The covariance of X and Y can now be computed according to definition 2.14:

Cov[X, Y] = E[XY] – E[X]E[Y] =  20 + 6 · 2 = 32.

As the covariance is larger than zero, we can conclude that X and Y are positively corre-
lated.

Example 2.6. Assume that Y has the frequency function

fX(x) = 

and assume that X = Y2. Are X and Y uncorrelated?

Table 2.2 Sample space for the load in Akabuga and Ekyaalo.

Dtot C D1 D2 D1D2
Probability, 

fDtot·fC

200 0.85 170 30 5 100 0.1

200 0.9 180 20 3 600 0.1

300 0.85 255 45 11 475 0.2

300 0.9 270 30 8 100 0.2

400 0.85 340 60 20 400 0.125

400 0.9 360 40 14 400 0.125

500 0.85 425 75 31 875 0.05

500 0.9 450 50 22 500 0.05

600 0.85 510 90 45 900 0.025

600 0.9 540 60 32 400 0.025

1 5
0


 if x 0 1 2 3 4,   =

otherwise.

1
5
--- 0 12 1 22 2 32 3 42 4++++ 

1
5
--- 0 12 22 32 42+ + + + 

1
5
--- 0 1 2 3 4+ + + + 

1 5
0


 if x 2 1 0 1 2,  ––=

otherwise.
2.2 Statistical Properties 13



Chapter 2 Random Variables
Solution: We start by computing expectation values according to definition 2.11:

E[XY] =  = 0,

E[X] =  = 2,

E[X] =  = 0.

The covariance of X and Y can now be computed according to definition 2.14:

Cov[X, Y] = E[XY] – E[X]E[Y] =  0 + 2 · 0 = 0.

As the covariance is zero, we can conclude that X and Y are uncorrelated.

2.3 Arithmetics of Random Variables

If a random variable X is a function of another random variable Y then it is generally difficult to directly
compute the probability distribution of X based on the probability distribution of Y—this is one of the
reasons why we would like to apply Monte Carlo simulation instead. However, there are some specific
cases, where direct computations are straightforward. Some of these cases are described in the follow-
ing theorems and will be used in the theoretical analysis of Monte Carlo simulation in this compen-
dium.

Theorem 2.20. (Calcualation of expectation value) Assume that a is a scalar, and Y, Y1
and Y2 are random variables. The following rules then apply to expectation values:

i) E[aY] = aE[Y],

ii) E[Y1 + Y2] = E[Y1] + E[Y2],

iii) E[g(Y)] =  (population),

E[g(Y)] =  (discrete random variable),

E[g(Y)] =  (continuous random variable).

Theorem 2.21. (Calculation of variance) Assume that a is a scalar, and Y, Y1, Y2 etc. are
random variables. The following rules then apply to variances:

i) Var[aY] = a2Var[Y],

ii) Var[Y1 + Y2] = Var[Y1] + Var[Y2] + 2Cov[Y1, Y2],

iii) Var[Y1 – Y2] = Var[Y1] + Var[Y2] – 2Cov[Y1, Y2],

iv)  = 

Theorem 2.22. (Convolution) If Y1 and Y2 are independent random variables then the
probability distribution of X = Y1 + Y2 can be computed using convolution:

i)  (discrete random variables),

1
5
--- 2– 2 2–  1– 2 1–  0 12 1 22 2++ ++ 

1
5
--- 2– 2 1– 2 0 12 22+ + + + 

1
5
--- 2–  1–  0 1 2+ + + + 

1
N
---- g yi 

i 1=

N



fY y g y 
y Y


fY
y Y 
 y g y dy

Var Yi

i 1=

k

 Cov

j 1=

k

 Yi Yj .
i 1=

k



fX x  fY1
t fY2

x t– 
t
=
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ii)  (continuous random variables).

Exercises

2.1 Are the following random variables heterogeneous or duogeneous?

a) fX(x) = 

b) fX(x) = 

c) fX(x) = 

d) fX(x) = 

e) fX(x) = 

More exercises to be added…

fX x  fY1
t fY2

x t– 
–



=

0.1

0

 if 10 x 20, 

otherwise.

1 11
0


 if x 10 11  20,  =

otherwise.

0.6

0.4

0



 if x 10,=

if x 20,=

otherwise.

0.6

0.04

0



 if x 10,=

if 10 x 20,
otherwise.

0.3

0.05

0



 if 10 x 12, 

if 12 x 20,
otherwise.
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Chapter 3

RANDOM NUMBERS
The idea of a Monte Carlo simulation is to estimate the behaviour of the simulated system using ran-
dom samples. When sampling a physical system, the randomness of the samples will be generated by
the system itself. However, when simulating a system using a mathematical model, it will be necessary
to generate random input values. This chapter will present methods how to do this. The presentation
will start with a description how to generate U(0, 1)-distributed random numbers and then it is
explained how random numbers of any other distribution can be obtained by transformation of random
numbers from a U(0, 1)-distribution.

3.1 Pseudo-random Numbers

One possibility to provide random numbers in a computer simulation would be to use some kind of
hardware device. Such a device could be designed to generate truly random values, but there would also
be an important disadvantage, namely that we would lack control of the produced random numbers. As
a consequence, running the same simulation twice would generally not produce the same set of sam-
ples, which can be a problem especially when testing a simulation method or model. For example,
assume that we run a simulation and we detect a few scenarios where the mathematical model produces
erroneous output models. Once the errors have been corrected, it would be practical to be able to run
the same scenarios again in order to verify that the problem has been solved.

Therefore, random number generation in computers are based on special mathematical functions or
algorithms, which given one or more initial values (referred to as seeds) produces a sequence of num-
bers between 0 and 1. This sequence is in reality deterministic, which means that if the same seed is
used, it will produce the same sequence (which makes simulations repeatable). Since these functions
are not truly random, they are called pseudo-random number generators. However, a properly
designed function will generate a sequence that has properties as close as possible to that of a true
sequence of independent U(0, 1)-distributed random numbers.

In practice, we do not need to worry about designing good pseudo-random number generators, as
such functions are readily available in almost all high-level programming languages. In fact, it is prefer-
able to use built-in pseudo-random number generators rather than programming one of your own, as
the built-in functions should have been carefully designed to provide appropriate statistical properties.

Nevertheless, it can be of interest to get an idea of the principles for generation of pseudo-random
numbers. As an example, we will study the widely used linear congruential generator. The sequence of
numbers for this pseudo-random number generator is computed using the following formulae:

Xi + 1 = (aXi + c) mod m, (3.1a)

Ui = (3.1b)

where

X1 = the seed,

Xi

m
----- ,
3.1 Pseudo-random Numbers 17
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Xi = internal state i,
a = an integer multiplier (0 < a < m),
c = an integer increment (0 < c < m),

m = an integer divisor (0 < m),
Ui = pseudo-random number i.

The modulo operator in (3.1a) returns the remainder when dividing (aXi + c) by m. The result of this
operation is an integer in the interval 0, …, m – 1. This means that the linear congruential generator can
at most produce m possible values before the sequence starts repeating itself. In order to make the
sequence as similar to a uniform distribution as possible, we would like the sequence to be as long as
possible. This can be achieved if the following rules are considered when choosing the constants a, c and
m:

• The greatest common divisor of c and m should be 1.

• a – 1 should be divisable by all prime factors of m.

• a – 1 should be a multiple of 4 if m is a multiple of 4.

The application of linear congruential generators is demonstrated in the following two examples:

Example 3.1. What sequence of numbers is generated by a linear congruential generator
where a = 5, c = 3 and m = 8 for the seed X1 = 1?

Solution: We can notice that the constants are fulfil the requirements above. The compu-
tations when starting with X1 = 1 and applying (3.1a) are shown in table 3.1 below. We can
see that the sequence will repeat itself after eight values, which is the maximal length of
the sequence when m = 8. 

Example 3.2. What sequence of numbers is generated by a linear congruential generator
where a = 5, c = 6 and m = 8 for the seed X1 = 1?

Solution: This time we do not fulfil the first requirement, as both c and m can be divided
by 2. The computations when starting with X1 = 1 and applying (3.1a) are shown in
table 3.2 below. This time we only get four values before the sequence starts repeating
itself, and for the remainder of the sequence we will only see the internal states 3, 5 and 7.

In an actual Monte Carlo simulation, it is always recommended to use the built-in pseudorandom
number generator of the programming language used. However, in the examples in this compendium,
it can be interesting to see how the random numbers were computed. Therefore, let us consider one last
example of the linear congruential generator:

Example 3.3. Generate 20 numbers using a linear congruential generator where a = 21,
c = 3 and m = 1 000 for the seed X1 = 770?

Table 3.1 Computation of the random number sequence in example 3.1.

i 1 2 3 4 5 6 7 8

Xi 1 0 3 2 5 4 7 6

Ui 0.125 0.000 0.375 0.250 0.625 0.500 0.875 0.750

5Xi + 3 8 3 18 13 28 15 38 33

Xi + 1 0 3 2 5 4 7 6 1

Table 3.2 Computation of the random number sequence in example 3.2.

i 1 2 3 4

Xi 1 3 5 7

Ui 0.125 0.375 0.625 0.750

5Xi + 6 11 21 31 41

Xi + 1 3 5 7 3
18 3.1 Pseudo-random Numbers
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Solution: The first 20 values in the sequence when applying (3.1a) and (3.1b) are shown
in the table below.

3.2 Transformation of Random Numbers

As described in the previous section, random inputs for Monte Carlo simulations can be created by
standard pseudorandom number generators available in almost all programming languages. However,
these generators produce U(0, 1)-distributed random numbers and unfortunately it is rarely so that all
inputs of the system to be simulated have that probability distribution. Hence, we need to be able to
convert U(0, 1)-distributed random numbers to the actual probability distributions of the inputs. There
are several methods that can be applied to perform this transformation. In this section, some methods
that are well suited for Monte Carlo simulations are described. 

The inputs to a Monte Carlo simulation do not need to be independent—the possibility to simulate
systems with correlated inputs is one of the advantages of Monte Carlo simulation. However, generat-
ing random numbers for correlated random variables can be tricky, and therefore it is convenient if all
inputs can be considered as independent. It might therefore be preferable to neglect weak correlations
or to rearrange the inputs to avoid correlations.1 

3.2.1 Independent Random Numbers

Most probability distributions can be generated using the inverse transform method:

Theorem 3.1. (Inverse Transform Method) If U is a U(0, 1)-distributed random number
then Y is a distributed according to the distribution function FY(x) if Y is calculated accord-
ing to Y =  

To be added: Examples…

Random Numbers from Finite Populations

To be added: Introduction…
To be added: Search algortihm…
To be added: Comments… (Notice that the states must be sorted if complementary random numbers

will be applied to an input!)
To be added: Examples…

Normally Distributed Random Numbers

To be added: Introduction…

Table 3.3 Computation of the random number sequence in example 3.3.

i 1 2 3 4 5 6 7 8 9 10

Xi 770 173 636 359 542 385 88 851 874 357

Ui 0.770 0.173 0.636 0.359 0.542 0.385 0.088 0.851 0.874 0.357

21Xi + 3 16 173 3 636 13 359 7 542 11 385 8 088 1 851 17 874 18 357 7 500

Xi + 1 173 636 359 542 385 88 851 874 357 500

i 11 12 13 14 15 16 17 18 19 20

Xi 500 503 566 889 672 115 418 781 404 487

Ui 0.500 0.503 0.566 0.889 0.672 0.115 0.418 0.781 0.404 0.487

21Xi + 3 10 503 10 566 11 889 18 672 14 115 2 418 8 781 16 404 8 487 10 230

Xi + 1 503 566 889 672 115 418 781 404 487 230

1. The latter can be done by dividing the population in separate subpopulations, which are simulated sep-
arately (cf. section 5.6).

FY
1– U .
3.2 Transformation of Random Numbers 19
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Theorem 3.2. (Approximate Inverse Transform Method) If U is a U(0, 1)-distributed
random number then Y is a N(0, 1)-distributed random number, if Y is calculated according
to 

Q = 

t = 

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,

d1 = 1.432788, d2 = 0.189269, d3 = 0.001308,

z = t – 

and finally

Y= 

To be added: Comments and exampels…

3.2.2 Correlated Random Numbers

A Monte Carlo simulation can have inputs that are correlated. In some cases, generation of correlated
random numbers is quite straightforward, but there is also a possibility that the transformation proce-
dure becomes quite time-consuming. In the latter case, one should consider if very weak correlations
should be ignored in the simulation or if the variables can be redefined using independent random var-
iables instead.2

Below follows descriptions of methods to generated correlated random numbers.

Normally Distributed Random Numbers

It is convenient if any correlated random variables in a Monte Carlo simulation are normally distrib-
uted, because there is then a straightforward transformation from independent normally distributed
random numbers (which can be generated using the approximative inverse transform method) to nor-
mally distributed random numbers with any correlation:

Theorem 3.3. Let X = [X1, …, XK]T be a vector of independent N(0, 1)-distributed compo-
nents. Let B = 1/2, i.e., let i and gi be the i:th eigenvalue and the i:th eigenvector of  and
define the following matrices:

P = [g1, …, gK],

 = diag(1, …, K),

B = P1/2PT.

Then Y =  + BX is a random vector where the elements are normally distributed with the
mean  and the covariance matrix .

Random Numbers from Finite Populations

As for normally distributed random numbers, finite populations are a special case where generation of

2. Consider for example how the loads in Akabuga and Ekyaalo, which are strongly positively correlated
(cf. example 2.4) can be replicated by two independent probability distributions for the total load and
the share of the load that is located in Akabuga (cf. example 2.2).

U

1 U–

 if 0 U 0.5, 

if 0.5 U 1,

2 Qln– ,

c0 c1t c2t2+ +

1 d1t d2t2 d3t3+ + +
--------------------------------------------------

z–

0

z



 if 0 U 0.5,

if U 0.5,=

if 0.5 U 1.
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correlated random is straightforward. The idea is to set up a univariate probability distribution of
states. The inverse transform method is then applied to randomise a state, which then translates into a
set of values for each element in the multivariate distribution. If the finite population is easily countable
this procedure is simply equivalent to randomly selecting a unit in the population, as illustrated in the
following example:

Example 3.4. To be added…

For larger populations, the same idea can be implemented by enumerating the possible values of all
units in the population; each possible set of values corresponds to one state. The probability of each
state is then computed, which gives a distribution function FY(x) for the states. The state can then be
randomised using the inverse transform method, and the values of the random variables are then set
acoording to the state.

Example 3.5. To be added…

It can be noticed that the order in which units or states are enumerated might have consequences for
the application of variances reduction techniques, especially complementary random numbers (cf.
section 5.1.2).

To be added: Discussion of how continuous distributions can be approximated by a finite population
to allow the above described method to be applied (rather than the general method below)…

General Method

The inverse transform method is only applicable to univariate distributions. The idea of the general
method is to generate one value at a time for a multivariate distribution. This requires that a condi-
tional probability based on the outcome outcome of the already generated random values is computed,
and then the inverse transform method to this conditional distribution. The method works on any mul-
tivariate distribution, but the disadvantage is that the computation of the conditional probability dis-
tribtuions can be quite time-consuming for complex distribution.

Consider a multivariate distribution of Y = [Y1, …, YK] with the density function fY. We can then apply
the following algorithm:

• Step 1. Calculate the density function of the first element,  

• Step 2. Generate a value of the first element according to 

• Step 3. Calculate the conditional density function of the next element, i.e., 

• Step 4. Randomise the value of the k:th element according to 

• Step 5. Repeat step 3–4 until all elements have been randomised.

Example 3.6. To be added…

Approximative Method

To be added…

Exercises

3.1 Figure 3.2 shows the distribution function of the continuous random variable Y. Apply the inverse
transform method to generate a value of Y based on the following random numbers from a U(0, 1)-
distribution:

a) 0.16.

b) 0.28.

c) 0.55.

d) 0.96.

fY1
.

fY1
.

f
Yk| Y1  Yk 1–   1  k 1–  =

.

f
Yk| Y1  Yk 1–   1  k 1–  =

.
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3.2 Figure 3.1 shows the distribution function of the continuous random variable Y. Apply the inverse
transform method to generate a value of Y based on the following random numbers from a U(0, 1)-
distribution:

a) 0.10.

b) 0.25.

c) 0.63.

d) 0.91.

3.3 A system has two binary inputs, Y1 and Y2, such that P(Y1 = 0) = 0.87, P(Y1 = 1) = 0.13, P(Y2 = 0) = 0.94

and P(Y2 = 1) = 0.06. The probability distributions of these two inputs have been combined into a

x

10

FY

1

0.8

987654321

0.6

0.2

0.4

Figure 3.1 Distribution function in exercise 3.2. 

x
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1
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0.6

0.2

0.4

Figure 3.2 Distribution function in exercise 3.1. 
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single joint distribution as shown in figure 3.3. Apply the inverse transform method to convert the
random value 0.46 from a U(0, 1)-distribution into values of Y1 and Y2.

3.4 Y1 and Y2 are two correlated random variables. The joint frequency function is given by

fY(x1, x2) = 

Generate random values of Y1 and Y2. You may use any of the U(0, 1)-distributed random num-
bers provided in table 3.4.

3.5 Y1 and Y2 are two correlated random variables. The density function of Y1 is given by

fY1(x) = 

For Y1  5, the conditional density function of Y2 is given by

fY2(x | Y1 5) = 

whereas for Y1 > 5 we have 

Table 3.4 List of random values for exercise 3.4.

Number 1 2 3 4

Value 0.82 0.13 0.63 0.28

FY x 

y2 = 0

y1 = 0

y2 = 1

y1 = 0

y2 = 0

y1 = 1

y2 = 1

y1 = 1

1

0.8

0.6

0.2

0.4

Figure 3.3 Distribution function in exercise 3.3. 
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
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



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all other x1 x2 .

0

0.05

0.15

0





 if x 0,

if 0 x 5, 
if 5 x 10,
if 10 x.

0

0.08

0.12

0





 if x 0,

if 0 x 5, 
if 5 x 10,
if 10 x,
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fY2(x | Y1> 5) = 

Generate random values of Y1 and Y2 using the random numbers 0.22 and 0.52 from a U(0, 1)-
distribution.

3.6 Y1 and Y2 are two correlated random variables. The joint density function is given by

fY(x1, x2) = 

Generate random values of Y1 and Y2 using the random numbers 0.22 and 0.64 from a U(0, 1)-
distribution.

0

0.04

0.16

0





 if x 0,

if 0 x 5, 
if 5 x 10,
if 10 x.

0.008

0.008

0.016

0





 if 0 x1 5, 0 x2 10,  

if 5 x1 10  , 0 x2 5, 

if 5 x1 10  , 5 x2 10,

all other x1 x2 .
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Chapter 4

SIMPLE SAMPLING
The most straightforward approach to Monte Carlo simulation is to collect samples completely at ran-
dom. This sampling strategy is referred to as simple sampling and a Monte Carlo simulation based on
simple sampling is sometimes referred to as a crude Monte Carlo simulation. Although we will see in
the next chapter that it is in fact possible to get better results using other sampling methods, it is neces-
sary to understand simple sampling before other methods are studied. Moreover, in some cases simple
sampling will be the most efficient simulation method, either due to the properties of the study or
because the time to develop a more advanced simulation method is longer than the time to obtain a rea-
sonable result from simple sampling.

4.1 Estimating Expectation Values

The idea of a Monte Carlo simulation is to collect random samples and based on these observations try
to compute one or more values, for example a statistical property of a random variable or a determinis-
tic value such as the mathematical constant  in Buffon’s needle experiment. However, as the result is
depending on random observations, it is inevitable that we introduce a random error—the result of a
Monte Carlo simulation will most likely not be exactly equal to the true value. In that sense, the result of
a Monte Carlo simulation is just an estimate, which we would like to be as close as possible to the true
value.

It is important to notice that since the result of a Monte Carlo simulation is a function of several ran-
dom samples, the result must also be a random variable. This is reflected in the notation for estimates
that will be used in this compendium. If we are discussing general properties of an estimate calculated
using one or another simulation method, we will denote the estimate by an upper-case Latin letter cor-
responding to the statistical property that we are trying to estimate. For example, the expectation value
of the random variable X is denoted X, which means that we choose the symbol MX for the random var-
iable representing the estimate of X. However, if we are actually computing an estimate then we are in
fact studying an outcome of MX, and we will then use the symbol mX, i.e., the lower-case Latin counter-
part of X.

Accuracy and Precision

In everyday language, we may use the word “accuracy” to describe if an estimate is close or not to the
true value. However, in science, accuracy should be separated from “precision”. In this section, the
meaning and difference between these two notions will be described, and we will at the same time dis-
cuss desirable properties of an estimate.

What we want from an estimate is that it should be as close as possible to the true value. Each simula-
tion method that we create will generate estimates from a certain probability distribution; therefore, we
may study this probability distribution of the estimate, in order to determine if it is likely or not that we
will get a result close to the true value. It can then be seen that there are two different ways that an esti-
mate can be “close” to the true value.

Let us start by examining the difference between the expectation value of the estimate, E[MX], and the
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true value, X. This difference is referred to as the accuracy of the estimate. Examples of estimates with
low and high accuracy are shown in figures 4.1a and 4.1b. We can see that a high accuracy means that
the difference between E[MX] and X is small; consequently, we have a better probability that the result-
ing estimate from a simulation is close to the true value compared to a simulation with lower accuracy.
Since the accuracy is a constant for a given simulation method (remember that each simulation method
will result in its own probability distribution of the estimate) it represents the systematical error in a
simulation. The ideal is of course if we can set up a simulation with no systematical error, i.e., that
E[MX] = X. In this case, we say that we have an unbiased estimate.

Now, we may continue by examining the variance of the estimate, Var[MX]. If we go back to the defini-
tion, the variance is the expected quadratic deviation from the expectation value; hence, the variance
describes how much a random variable will vary around its expectation value. A low variance means
that it is likely that we only have a small deviation between a single observation of the random variable
and its expectation value, whereas a high variance means that it is more likely to have large deviations.
The variance of the estimate is referred to as the precision of the estimate. The precision is inversely
proportional to the variance, i.e., a large variance of the estimate means that we have a low precision,
whereas a low variance yields a high precision (cf. figures 4.1c and 4.1d). The precision represents the
random error of a Monte Carlo simulation. Unlike systematical errors, this is something that cannot be
avoided when sampling. What we would like to is therefore to keep the random error as small as possi-
ble.

The Law of Large Numbers

To be added: Introduction…

Theorem 4.1. (Law of Large Numbers): If x1, …, xn are independent observations of the
random variable X then 

E[MX]

a) Estimate with low accuracy and low precision.

c) Estimate with low accuracy and high precision.

b) Estimate with high accuracy and low precision.

d) Estimate with high accuracy and high precision.

E[MX]

fMX

X

x

E[MX]

fMX

X

x

fMX

X

x

fMX

X

x

E[MX]

Figure 4.1 Illustration of the meaning of “accuracy” and “precision” respectively. 
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is an unbiased estimate of E[X].

Proof: MX is an unbiased estimate of E[X] if E[MX] = E[X]. Let Ti denote the number of
times that unit i appears in the samples; hence, the outcome of Ti is an integer between 0
and n. The estimate of the expectation value can then be expressed as

The number of successful trials when n trials are performed and the probability of success
is p in each trial is Binomial-distributed, i.e, Ti is B(n,  1/N)-distributed. 

 = {the expectation value of a B(n, p)-distribution is 

n·p} =  

Notice the similarity between the definition of expectation value (definition 2.11) and the formula for
the estimate of the expectation value (theorem 4.1 above):

  (4.1)

When calculating the expectation value analytically, we enumerate all units in the population and com-
pute the mean value, whereas in simple sampling we enumerate all selected samples and compute the
mean value.

Replacement

To be added: Definition of replacement…
To be added: Discussion of the precision of the estimated expectation value…

Example 4.1. Consider an urn with five balls. The balls are either white or black. (They
also have different sizes, but that we will ignore in this example.) Introduce a random var-
iable X representing the colour of a randomly chosen ball from the urn, such that 

X = 

Examine the probability distribution of MX if five samples are collected with and without
replacement respectively.

mX
1
n
--- xi

i 1=

n

=

MX
1
n
--- Tix i.

i 1=

N

=

E MX  E
1
n
--- Tix i

i 1=

N


1
n
---E Ti x i

i 1=

N

= =

1
n
--- n

N
----x i

i 1=

N


1
N
---- x i

i 1=

N

 E X .= =

X
1
N
---- xi

i 1=

N

= mX
1
n
--- xi.

i 1=

n

=

Figure 4.2 Simple urn experiment. 

0

1

 if  the ball is white,

if the ball is black.
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Solution: To be added: Define frequency function, compute X, explain figure 4.3 (and
add the probability of each state during the sample process)…

Theorem 4.2. In simple sampling, the variance of the estimated expectation value is

Proof: To be added?

The factor (N – n)/N is called fpc (finite population correction). For infinite populations we get 

(4.2)

To be added: Interpretation of the theorem & examples…

4.2 Other Estimates

To be added: Introduction…

Estimating Variance

To be added: Introduction…
From the comparison in (4.1) one might guess that an estimate of the variance can be obtained by 

(4.3)

However, this estimate requires that we know the true expectation value, and if this was the case we
would also be able to analytically compute the variance. Hence, (4.3) cannot be applied in practice. But
what about replacing the true expectation value by the estimated expectation value, i.e., 

(4.4)

It turns out that the (4.4) is indeed an estimate of Var[X], although, the estimate is biased. 
To be added: Explanation why (4.4) is biased?

Theorem 4.3. If x1, …, xn are independent observations of the random variable X then

is an unbiased estimate of Var[X].

The proof of theorem 4.3 is not trivial and will therefore will be omitted from this presentation. As a
substitute, we may verify the theorem as well as (4.3) and (4.4) by an example: 

Example 4.2. Consider the urn experiment from example 4.1. Examine the probability
distribution of the estimates (4.3), (4.4) and theorem 4.3 respectively if five samples are
collected (with replacement).

Solution: The true variance of the urn experiment is given by

Var[X] =  = 0.4 · (0 – 0.6)2 + 0.6 · (1 – 0.6)2 = 0.24.

As the order in which the samples appear is of no interest for neither the estimated mean
nor the estimated variance, we can distinguish between six possible outcomes, as listed in
table 4.1 below. The estimates of mean and variance are then computed for each combina-
tion of collected samples. The probability for a certain result can be computed using the

Var MX  Var X 
n

----------------- N n–
N

------------- .=

Var MX  Var X 
n

----------------- .=

1
n
--- xi X– 2.

i 1=

n



1
n
--- xi mX– 2.

i 1=

n



sX
2 1

n 1–
------------ xi mX– 2

i 1=

n

=

fX x  x X– 2

x

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mX = 0.5

fMX

1

x

1

fMX

1

x

1

fMX

1

x

1

fMX

1

x

1

fMX

1

x

1

mX = 0 mX = 1

2
5
--- 3
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---
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3
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---1
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--- 2
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2
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3
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2
2
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1
1
--- 1

1
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Figure 4.3 Probability distribution of the estimated expectation value in the urn experiment. Sampling without
replacement is shown to the left and sampling with replacement is shown to the right.
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event tree in figure 4.3.

From the results in table 4.1 we can compute the expectation value of the estimated vari-
ance for the three different methods:

 =  = 0.24.

 =  = 0.192.

 =  = 0.24.

These results confirm that (4.3) and theorem 4.3 are unbiased estimates (because the
expectation value of the estimate is equal to the true value), whereas (4.4) tends to under-
estimate the variance.

To be added: Show how  can be computed using sums of xi and xi
2.

To be added: Estimating covariance…

Estimating Probability Distributions

To be added…

Estimating Covariance

To be added…

4.3 Application

To be added: Introduction…

Stopping Rules

To be added: Discussion of how many samples should be analysed in a Monte Carlo simulation…

Table 4.1 Probability distribution of the estimated variance in the urn experiment.

Collected samples

Probability

Estimated mean, 
mX

0 0.2 0.4 0.6 0.8 1

Estimated variance

0.36 0.32 0.28 0.24 0.2 0.16

0 0.16 0.24 0.24 0.16 0

0 0.2 0.3 0.3 0.2 0
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Definition 4.4. The coefficient of variation for the estimate MX is given by

Confidence Intervals

To be added: Confidence intervals…

Definition 4.5. A confidence interval is an interval which has some specific probability
(confidence level) to include the true value.

Theorem 4.6. Let t be the value such that (t) = 1 – /2.1 If MX is normally distributed
then  is a confidence interval with confidence level 1 – .

Simulation Procedure

To be added: Discussion…

Example 4.3 (simple sampling of Akabuga District). To be added…

Exercises

4.1 The following results have been obtained from a Monte Carlo simulation using simple sampling:

 = 248,  = 252.

a) Calculate the estimated expectation value of X.

b) Calculate the estimated variance of X.

c) Calculate the coefficient of variation.

d) Assume that the coefficient of variation is used in the stopping criteria, and that the relative tol-
erance level is set to 0.01. Should more samples be generated or can the simulation be stopped at
this point? 

e) Calculate a 95% confidence interval for the expectation value of X. It can be assumed that MX is
normally distributed.

1. (x) is the distribution function of a N(0, 1)-distributed random variable.

Table 4.2 Typical values of t.

Confidence level, 1 –  95% 99% 99.9%

t 1.9600 2.5758 3.2905

AX

Var MX 
MX

--------------------------- .=

mX t sX n

Figure 4.4 Principle of simple sampling. 

Pseudo-
random
number

generator
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U Y Mathematical
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X
Sampling MX

xi

i 1=

500

 xi
2

i 1=

500


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4.2 The following results have been obtained from a Monte Carlo simulation using simple sampling:

 = 20 000,  = 4 000 000.

a) Calculate the estimated expectation value of X.

b) Calculate the estimated variance of X.

c) Would it be appropriate to have a stopping rule for the simulation of X, which stops the simu-
lation if the coefficient of variation is less then 0.01? Do not forget to motivate your answer!

4.3 Assume that the objective of a Monte Carlo simulation is to find an interval mX 0.1mX, which is a
95% confidence interval for the expectation value E[X]. The stopping criteria for the simulation is
to test if the coefficient of variation is less than the relative tolerance level, . Calculate an appro-
priate value for .

xi

i 1=

100

 xi
2

i 1=

100


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Chapter 5

VARIANCE REDUCTION
TECHNIQUES
It was shown in the previous chapter that the variance of an estimated expectation value, Var[MX], is
related to the precision of the simulation; a low variance means that it is more likely that the result will
be accurate, whereas a high variance means that there is a larger risk that the result will be inaccurate.
We also learned that Var[MX] is depending on the probability distribution of the samples variable
(which we cannot affect) and the number of samples (which we do control). However, until now we
have studied simple sampling, where the samples are selected completely at random (i.e., each unit in
the population has the same probability of being selected). Interestingly, if we manipulate the selection
of samples, the variance of the estimate can be lower than for simple sampling. Such methods to
improve the precision of a Monte Carlo simulation are referred to as variance reduction techniques.
This chapter will describe six variance reduction techniques.

5.1 Complementary Random Numbers

The idea behind complementary random numbers is to reduce the influence of random fluctuations,
which always appear in sampling, by creating a negative correlation between samples. In practice, this
means that the generation of random numbers is manipulated in such a way that the probability of an
even spread over the whole population increases.

5.1.1 Principle

Assume that the expectation value E[X] = X has been estimated in two separate simulations, i.e., we
have two estimates MX1 and MX2 such that

E[MX1] = E[MX2] = X. (5.1)

It is not surprising that the mean of the two estimates is also an estimate of X, and we can easily verify
that this is the case, because

 =  =  = X. (5.2)

As the expectation value of the mean estimate is equal to X, the mean estimate is in itself an unbiased
estimate of X in accordance to the discussion in section 4.1. The interesting question is now how pre-
cise this mean estimate is compared to simple sampling with the same total number of samples. From
(4.2) we have that simple sampling with in total n samples results in

(5.3)

Now assume that the two estimates MX1 and MX2 each include n/2 samples (which means that the total
number of samples is still n) then variance of the mean estimate is given by

E
MX1 MX2+

2
---------------------------- 1

2
--- E MX1  E MX2 +  1

2
--- X X+ 

Var MX  Var X 
n

------------------
X

2

n
------- .= =
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 = + (5.4)

If MX1 and MX2 both are independent estimates obtained with simple sampling then we get Var[MX1] =
Var[MX2] =  and Cov[MX1, MX2] = 0. Hence, (5.4) yields

 =  =  = (5.5)

By comparing (5.3) and (5.5) we see that the precision is the same, which is also what we should
expect—running one simulation of n independent samples should be the same thing as combining the
results of two independent simulations of n/2 independent samples each.

However, the interesting part is that if the two estimates are not independent but negatively corre-
lated then (5.4) will result in a variance that is lower than the variance for simple sampling with the
same amount of samples. The questions is then how we should proceed in order to find estimates that
are negatively correlated. A straightforward method is to use complementary random numbers when
we generate scenarios for a Monte Carlo simulation.

• We start with a random number from a random number generator, which we have seen in
section 3.1, corresponds to a U(0, 1)-distributed random variable. If U is a value from the ran-
dom number generator then we define U* = 1 – U as the complementary random number of U.
It is easy to verify that U and U* are negatively correlated with U, U* = –1.

• Then we transform both the original random number and the complementary random number
into the probability distribution of the input. If this is done using a the inverse transform
method then we get that Y =  and Y* =  These values will also be negatively
correlated, but the transformation may weaken the correlation, i.e., we get Y, Y*  –1. This also
holds for the other transformation methods presented in section 3.2.

• Next we compute the value of the output for both original and the complementary input value,
i.e, X = g(Y) and X* = g(Y*). If the simulated system is such that there is a correlation between
the input and output values then the original and complementary output values will also be
negatively correlated, but again the correlation might be weakened, i.e., we get X, X*  Y, Y*.

• Finally, we let MX1 be an estimate based on n samples of X, whereas MX2 is obtained from sam-
pling the corresponding values of X*. Obviously, we will now have two estimates that are nega-
tively correlated.

5.1.2 Application

To be added: Introduction…

Multiple Inputs

To be added: Discussion on how to manage systems with multiple inputs…

Auxiliary Inputs

Complementary random numbers result in a variance reduction if there is a negative correlation
between the original and complementary result variables (X and X*). The challenge when setting up a
simulation is however that we cannot directly control the values of the result variables, but only the val-
ues of the inputs (Y and Y*)—complementary random numbers will be efficient if the negative correla-
tion between Y and Y* also results in a negative correlation between X = g(Y) and X* = g(Y*). This may
not be true for all inputs to a system, and we should then not apply complementary random numbers to
these inputs.

Sometimes it might even not be possible to find any input variable that fulfils the criterion above. This
does however not necessarily mean that complementary random numbers are not applicable to this sys-
tem, as there might be a possibility to introduce an auxiliary input that does fulfil the criterion. An aux-
iliary input, YE, is defined as an arbitrary function of the actual inputs to the system, i.e., 

YE = h(Y1, …, YJ). (5.6)

Var
MX1 MX2+

2
---------------------------- 1

4
---Var MX1  1

4
---Var MX2 +

1
4
--- 2Cov MX1 MX2 .

X
2

Var
MX1 MX2+

2
---------------------------- 1

4
--- Var MX1  Var MX1 + 

Var MX1 
2

-------------------------
X

2

n
-------.

FY
1– U  FY

1– U* .
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A straightforward choice of the arbitrary function h would be to use the sum of some of the inputs.

Example 5.1 (auxiliary inputs for a small multi-area power system). Consider a power
system divided in three areas. The inputs to a simulation of this system is the available
generation capacity in each unit,  …,  and the load in each area, D1, D2, D3. The
objective of the simulation is to study the total operation cost and the reliability of supply.
Assume that complementary random numbers should be used to improve the efficiency of
the simulation. To which inputs should we apply complementary random numbers?

Solution: Each individual input will only have a weak impact on the outputs. For exam-
ple, if one unit is unavailable we cannot predict that the system will have a higher opera-
tion cost or that there will be load shedding, because the other units can be available or the
load can be low. However, we can introduce two auxiliary inputs, namely the total availa-
ble generation capacity, tot =  +  +  +  and total demand, Dtot = D1 + D2 +
D3. A negative correlation between two values of the auxiliary inputs will also result in a
negative correlation between at least one of the result variables, as illustrated in table 5.1.

In order to correctly simulate a system considering auxiliary inputs, we need to have the probability
distribution of the auxiliary inputs. Although this may require some computational efforts, it should not
be a problem as the probability distribution of all the original inputs is known. Moreover, we must
make sure that the random values of the auxiliary inputs are consistent with the random values of the
original inputs. As the auxiliary inputs are a function of some original inputs, there will clearly be a cor-
relation between auxiliary and original inputs. We could therefore identify their joint probability distri-
bution and randomise values according to this distribution. 
To be added: Further discussion (challenge of generating correlated numbers, cf. section 3.2.2).

Example 5.2 (joint probability distribution of available generation capacity). Data for
the generating units in example 5.1 are shown in table 5.2. Identify the joint probability
distribution for the total generation capacity and the generation capacity in each unit.
Moreover, generate a scenario using the value 0.17 from a U(0, 1)-distribution as well as a
complementary scenario.

Solution: As each unit can either be available or unavailable, we will in total have sixteen
possible states for the available generation capacity of all units. For each of these states we
can compute the total available generation capacity and the probability of that state. The
result of this enumeration, sorted according to increasing values of tot are listed in
table 5.3.

To be added: Comments… (for example, why is there a difference between state 2 and 3)

To be added: Figure showing the distribution function and the result of applying the

Table 5.1 Correlations between auxiliary inputs and result variables in example 5.1.

Total available 
generation 

capacity, tot

Total demand, 
Dtot

Total operation 
cost, TOC

Loss of load, 
LOLO

Low Low Low Not likely

High Low Low Very unlikely

Low High High Quite likely

High High High Not likely

Table 5.2 Data for the power system in example 5.2.

Unit, g Area, n
Installed 

capacity,  
[MW]

Availability [%]

1 1 500 95

2 2 500 95

3 2 800 90

4 3 1 000 90

G1, G4

G G1 G2 G3 G4,

G

Gg

G
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inverse transform method using U = 0,17 and U* = 0,83.

Complementary Random Numbers for Finite Correlated Multivariate Distribtuions

To be added: Examples showing how states can be ordered to facilitate complementary random num-
bers…

Simulation Procedure

To be added: Overview, equations, block diagram and example…

5.2 Dagger Sampling

This variance reduction technique is based on a similar principle as complementary random numbers.
Dagger sampling is however limited to two-state probability distributions, where complementary ran-
dom numbers are not very effective.

To be added: Further comments?

5.2.1 Principle

Consider a two-state random variable Y with the frequency function

fY(x) = (5.7)

where p < 0.5. This probability distribution is clearly fulfilling the criteria of a duogeneous population
(cf. definition 2.6), with the value a being the conformist units and b the diverging units.

In dagger sampling, random values of Y are not generated by the inverse transform method, but using
a dagger transform:

Theorem 5.1. (Dagger Transform) If U is a U(0, 1)-distributed random number then Y is a

Table 5.3 Joint probability distribution of the available generation capacity in example 5.2. 

State, i

Total 
available 

generation 
capacity, 

tot [MW]

Available 
generation 
capacity in 

unit 1,
 [MW]

Available 
generation 
capacity in 

unit 2,
 [MW]

Available 
generation 
capacity in 

unit 3,
 [MW]

Available 
generation 
capacity in 

unit 4,
 [MW]

Probability, 

1 0 0 0 0 0 0.05 · 0.05 · 0.1 · 0.1 = 0.000025

2 500 500 0 0 0 0.95 · 0.05 · 0.1 · 0.1 = 0.000475

3 500 0 500 0 0 0.05 · 0.95 · 0.1 · 0.1 = 0.000475

4 800 0 0 800 0 0.05 · 0.05 · 0.9 · 0.1 = 0.000225

5 1 000 0 0 0  1 000 0.05 · 0.05 · 0.1 · 0.9 = 0.000225

6 1 000 500 500 0 0 0.95 · 0.95 · 0.1 · 0.1 = 0.009000

7 1 300 500 0 800 0 0.95 · 0.05 · 0.9 · 0.1 = 0.004275

8 1 300 0 500 800 0 0.05 · 0.95 · 0.9 · 0.1 = 0.004275

9 1 500 500 0 0 1 000 0.95 · 0.05 · 0.1 · 0.9 = 0.004275

10 1 500 0 500 0 1 000 0.05 · 0.95 · 0.1 · 0.9 = 0.004275

11 1 800 0 0 800 1 000 0.05 · 0.05 · 0.9 · 0.9 = 0.002025

12 1 800 500 500 800 0 0.95 · 0.95 · 0.9 · 0.1 = 0.081225

13 2 000 500 500 0 1 000 0.95 · 0.95 · 0.1 · 0.9 = 0.081225

14 2 300 500 0 800 1 000 0.95 · 0.05 · 0.9 · 0.9 = 0.038475

15 2 300 0 500 800 1 000 0.05 · 0.95 · 0.9 · 0.9 = 0.038475

16 2 800 500 500 800 1 000 0.95 · 0.95 · 0.9 · 0.9 = 0.731025

G G1 G2 G3 G4

f
G

1 p–

p

0



 if x a,=

if x b,=

otherwise,
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distributed according to the frequency function (5.7) if Y is calculated according to

 for j = 1, …, S,

where S is the largest integer such that S  1/p.

The value S in theorem 5.1 is referred to as the dagger cycle length. It should be noted that one random
number from the pseudorandom number generator is used to generate S values of Y.

Example 5.3. To be added…

We have already seen in section 5.1.1 that a negative correlation between input values can result in a
variance reduction compared to simple sampling. We can also easily see that there is a negative correla-
tion between the random values in a dagger cycle, because the diverging unit can never appear more
than once in a dagger cycle. This means that if we know that the j:th value was equal to the diverging
unit then we know that all the other S – 1 values are equal to the conformist unit; hence, the j:th value
and the other values are varying in opposite directions, which is characteristic for a negative correla-
tion.

We can also verify the negative correlation by going back to the mathematical definition. Let us start
by investigating the product of two values in a dagger cycle, i.e., YjYk. There are only two possible values
of this product, aa or ab, since the diverging unit cannot appear more than once in the dagger cycle. We
can also observe that for all dagger transforms there will only be two intervals there either the j:th or the
k:th value of dagger cycle are equal to the diverging unit b; hence, the probability for this result is 2p.
This means that the expectation value of the product is given by

E[YjYk] = 2pab + (1 – 2p)aa. (5.8)

Moreover, we can compute the expectation value of each value as

E[Yj] = E[Yk] = (1 – p)a + pb. (5.9)

The covariance between Yj and Yk can now be computed according to definition 2.14:

Cov[Yj, Yk] = E[YjYk] – E[Yj]E[Yk] = pab + (1 – 2p)aa – ((1 – p)a + pb)2 = –p2(a + b)2 < 0. (5.10)

To be added: Example with figure…

5.2.2 Application

To be added: Introduction…

Multiple Inputs

To be added: Discussion on how to manage inputs with different dagger cycle lengths…

Simulation Procedure

To be added: Overview, equations, block diagram and example…

5.3 Control Variates

To be added: Introduction…

5.3.1 Principle

5.3.2 Application

To be added: Introduction…

FYj
 x 

b

a

 if j 1– p x jp,  

otherwise,
=
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Finding a Simplified Model

To be added: Discussion on how to create suitable simplified models…

Simulation Procedure

To be added: Impact on coefficient of variation depending on how the control variate method is imple-
mented…
To be added: Overview, equations, block diagram and example…

5.4 Correlated Sampling

To be added: Introduction…

5.4.1 Principle

5.4.2 Application

To be added: Introduction…
To be added: Overview, equations, block diagram and example…

5.5 Importance Sampling

The aim of importance sampling is to focus the attention of the simulation to those scenarios that are of
high importance for the final result. A typical example is a duogeneous population, where it is necessary
to find the rare diverging units in order to correctly estimate the expectation value of the population. In
importance sampling, the selection of units (i.e., the randomisation of scenarios) is manipulated to
increase the probability of finding interesting scenarios. Thus, in contrast to simple sampling, where all
units have the same probability of being selected and there all observations have the same weight,
importance sampling results in some units having a higher chance of being selected, but on the other
hand these units have a lesser weight in the final result.

5.5.1 Principle

Assume that we have a population Y, for which we want to compute the expectation value E[X] = E[g(Y)].
However, instead of selecting units from Y and evaluate using the model g(Y), we choose to select unit
from another population Z and then we sample

X(Z) = w(Z)·g(Z), (5.11)

where w(Z) is a weight factor computed according to

w() = (5.12)

i.e., the weight factor is the quota of the density function for the population Y, fY(), and the density
function of the population Z, fZ(). The latter density function is referred to as the importance sam-
pling function. This density function may be chosen freely as long as it fulfils the condition that all val-
ues that appear in the population Y should also appear in the population Z:

fZ() > 0  : fY() > 0. (5.13)

The estimate from simple sampling of X(Z) is also an estimate of E[X], because

E[MX(Z)] = {cf. theorem 4.1} = E[X(Z)] =  =  = 

fY  
fZ  
------------- ,

fZ  w  g   d

 fZ  

fY  
fZ  
-------------g   d



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=  = E[g(Y)]. (5.14)

Let us now examine the precision of sampling X(Z):

Var[MX(Z)] = {cf. theorem 4.2} = =  =

=  =  = 

= (5.15)

We can see that the precision is depending on the chosen importance sampling function, fZ(). If we
would use the actual probability distribution of the inputs to the system, fY(), as importance sampling
function then (5.15) yields

Var[MX(Z)] =  = {w() = 1  } =  =

= (5.16)

i.e., the same result as for simple sampling, which is not very surprising considering that generating
scenarios according to the probability distribution of the inputs to the system is exactly what we do in
simple sampling. However, if we instead would choose the importance sampling function

fZ() = (5.17)

then we would get the precision

Var[MX(Z)] =  =  =

=  =  = 

=  = 0. (5.18)

An importance sampling function chosen according to (5.17) is referred to as an optimal importance
sampling function, because the result of the simulation will always be exactly equal to the true value of
E[X]. 

A Monte Carlo simulation that always produces the exact answer seems too good to be true, and that
is of course also the case—the catch is that in order to find the optimal function, we must know E[X] =
X.1 However, the point of importance sampling is that if we can find an importance sampling function
which is sufficiently close to the optimal function, we can get an estimate which has a better precision
than the estimate from simple sampling, i.e., Var[MX(Z)] < Var[MX]. It should though be noticed that
there is also a potential risk in using importance sampling, as a poor choice of importance sampling
function can create the opposite result, i.e., Var[MX(Z)] > Var[MX].

Example 5.4 (estimates from importance sampling). To be added: Examples illustrating good
and poor importance sampling functions for a small system with a finite set of scenarios…

5.5.2 Application

To be added: Introduction…

1. And if we already know the answer it is not surprising that we can produce the correct answer again…
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Multiple Inputs

To be added: Discussion on how to manage systems with multiple inputs…
To be added: Example showing the computation of the weight factor for a simulationn with multiple

inputs…

Multiple Outputs

To be added: Discussion on how to manage systems with multiple outputs…

Finding an Importance Sampling Function

To be added: Discussion on how to choose the importance sampling function using a simplified model…

Systematical Errors

To be added: Discussion on how inappropriate importance sampling functions can introduce a system-
atical error, and how this sometimes can be acceptable…

Simulation Procedure

To be added: Overview, equations, block diagram and example…

5.6 Stratified Sampling

The idea of stratified sampling is similar to importance sampling; more samples should be collected
from the most interesting scenarios, and consequently observations from different parts of the popula-
tion need to be assigned different weight factors. However, this idea is implemented differently in strat-
ified sampling compared to importance sampling. Here, the population will be divided into different
parts, which are referred to as strata, and each stratum will be investigated separately from the others.
Results from different strata will then be given different weight in the computation of the final result.

5.6.1 Principle

Assume that we have a population X, for which we want to compute the expectation value E[X]. This
population is divided into strata so that each unit in X belongs t0 one stratum h. Consequently, if Xh is a
strata (i.e., the subset of units from the population X which are belonging to stratum h) then the inter-
section of two strata must be an empty set, i.e.,

Xh Xk = , h k. (5.19)

Moreover, the union of all strata must be equal to the population X:

 = X. (5.20)

For each stratum we can compute a stratum weight, h, which is equal to the relative number of units
in the stratum or—equivalently—the probability that a randomly chosen unit from the population
belongs to this particular stratum:

h = P(X  Xh) = (5.21)

where Nh is the number of units in stratum h.
Assume that we have independent estimates, mXh, of the expectation value of each stratum, i.e., 

Xh = E[Xh] = (5.22)

then we can estimate E[X] using the average of the mXh weighted by the stratum weight,

Xh
h


Nh

N
------ ,

1
Nh
------ xh i

i 1=

Nh

 ,
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mX = (5.23)

where L is the number of strata. This can be verified by studying

 =  = {assume that MXh is an unbiased estimate of E[Xh]} = 

 =  =  = {summarising all units in all strata is 

the same as summarising all units in the population} =  = E[X]. (5.24)

Estimates of the expectation value in a stratum can be obtained by simple sampling:

mXh = (5.25)

In some cases, we might even be able to compute the true expectation value according to (5.22) for
some strata, and then we will of course use mXh = Xh.

As usual, we are interested in the precision of the estimate and we should therefore study

 =  

+  = {the estimates for each stratum 

are calculated separatly from each others and are thus independent} = 

(5.26)

We can see that the variance of the estimate is depending on the stratification (i.e., the choice of strata).
If we would use only one stratum, we have L = 1 and 1 = 1; the result of (5.26) is then

 = 1 · Var[MXh], (5.27)

i.e., the same result as for simple sampling, which is not very surprising considering that randomly
selecting units from the entire population is exactly what we do in simple sampling. However, if we
instead would define strata which are completely homogeneous, i.e., 

xh, i = xh, j  h, i, j, (5.28)

then we would get the precision

 =  = 0. (5.29)

An importance sampling function chosen according to (5.17) is referred to as a perfect stratification,
because the result of the simulation will always be exactly equal to the true value of E[X]. 

A Monte Carlo simulation that always produces the exact answer seems too good to be true, and that
is of course also the case—the catch is that in the perfect stratification, the stratum weights must be
equal to the probability that X is equal to a specific value x, i.e., the frequency function of X, and if fX(x) is
known we can compute the expectation value directly instead. However, the point of stratified sampling
is that if we can find a stratification where strata are sufficiently homogeneous, we can get an estimate
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which has a better precision than the estimate from simple sampling. It should though be noticed that
there is also a potential risk in using stratified sampling, as a poor stratification can create the opposite
result.

Example 5.5 (estimates from stratified sampling. To be added: Examples illustrating good
and poor importance sampling functions for a small system with a finite set of scenarios…

Old example: Consider a six-sided dice, where two sides are labelled “0” and the remaining
four sides are labelled “1”. Compare the expectation value and variance of the entire popu-
lation compared to the properties of two strata (one for the two units with the value 0, and
another stratum for the remaining units).

Solution: The population in this example can be described as X = {0, 0, 1, 1, 1, 1}, i.e., one
unit per side of the dice. However, in order to reduce the length of the computations, we
can remove duplicates from the population, i.e., let us consider X = {0, 1, 1}. The two strata
are then defined by the subsets X1 = {0} and X2 = {1, 1}. The expectation values and vari-
ances can be computed directly according to the definitions:

E[X] = (0 + 1 + 1)/3 = 2/3,

Var[X] = ((0 – 2/3)2 + (1 – 2/3)2 + (1 – 2/3)2)/3 = 2/9,

E[X1] = 0,

Var[X1] = 0,

E[X2] = (1 + 1)/2 = 1,

Var[X2] = 0.

5.6.2 Application

To be added: Introduction…

Sample Allocation

To be added: Discussion on how to distribute samples between strata…

Theorem 5.2. (Neyman allocation) For a given stratification, the variance of the estimate
from stratified sampling, i.e.,

is minimised if samples are distributed according to

Algorithm 5.3. A reasonable compromise allocation for a batch of samples in stratified
sampling can be computed as follows:

Step 1. Calculate a compromise allocation, nh
 for n + nb samples (where n is the to-

tal number of samples collected so far and nb is the number of samples to be collected
in batch b).

Step 2. Calculate a preliminary batch allocation according to = nh
 – nh, where

nh is the number of samples collected so far from stratum h.

Step 3. Let H + be the index set of strata which should be allocated more samples, i.e.,

H + = {h:  > 0}.

Var hMXh

h 1=

L

 ,

nh n
hXh

kXkk 1=
L


--------------------------------.=

nh b'

nh b'
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Step 4. Calculate the total number of samples needed to collect at least as many sam-
ples as in the target allocation for each stratum:

n+ = .

Step 5. Let H – be the index set of strata which have received to many samples, i.e.,

H – = {h:  < 0}.

Step 6. Calculate the total number of additional samples compared to the target al-
location for each stratum:

n– = .

Step 7. Calculate the batch allocation according to

nh, b = 

The Cardinal Error

To be added: Discussion on how the practical application of the Neyman allocation may introduce a sys-
tematical error when sampling duogeneous populations…

The Cum f  Rule

To be added: Discussion on how to design strata using a simplified model…

The Strata Tree

To be added: Discussion on how to design strata using classification of input scenarios…

Simulation Procedure

To be added: Overview, equations (including random number generation), block diagram and exam-
ple…

Example 5.6 (random number generation in stratified sampling). To be added…

Exercises

5.1 Y is U(100 200)-distributed. If yi = 125, then what is the value of the complementary random num-
ber yi*?

5.2 Figure 5.1 shows the distribution function of the continuous random variable Y. If yi = 32, then
what is the value of the complementary random number yi*?

5.3 Figure 5.2 shows the distribution function of the continuous random variable Y. Use the following
random numbers from a U(0, 1)-distribution to compute a value of Y; moreover, compute the cor-
responding complementary random number Y*.

a) 0.80.

b) 0.14.

c) 0.42.

nh b'
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nh b'
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h H
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0
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 h H
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 Exercises 43



Chapter 5 Variance Reduction Techniques
5.4 The random variable Y has the frequency function

fY(x) = 

Apply dagger sampling to generate a sequence of values of Y based on the following ran-
dom numbers from a U(0, 1)-distribution:

a) 0.66.

b) 0.85.

c) 0.04.

5.5 A system has two binary inputs, Y1 and Y2, such that P(Y1 = 0) = 0.87, P(Y1 = 1) = 0.13, P(Y2 = 0) = 0.94

and P(Y2 = 1) = 0.06. The probability distributions of these two inputs have been combined into a

x
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Figure 5.1 Distribution function in exercise 5.2. 
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Figure 5.2 Distribution function in exercise 5.3. 
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single joint distribution as shown in figure 5.3. Apply the inverse transform method to convert the
random value 0.46 from a U(0, 1)-distribution into values of Y1 and Y2.

a) Assume that 20 scenarios are to be generated (i.e., we must generate 20 values of Y1 and 20 val-
ues of Y2). How many values from the random number generator are needed if the inverse trans-
form method (i.e., simple sampling) is applied?

b) Assume that 20 scenarios are to be generated. How many values from the random number gen-
erator are needed if complementary random numbers are applied? 

c) Assume that 20 scenarios are to be generated. How many values from the random number gen-
erator if dagger sampling is applied? Assume that the dagger cycles for the two inputs are inde-
pendent.

d) Assume that 20 scenarios are to be generated. How many values from the random number gen-
erator if dagger sampling is applied? Assume that the dagger cycles for the two inputs are reset at
the end of the shorter cycle.

e) Assume that 20 scenarios are to be generated. How many values from the random number gen-
erator if dagger sampling is applied? Assume that the dagger cycles for the two inputs are reset at
the end of the longer cycle.

5.6 The random variable Y has the frequency function

fY(x) = 

a) Assume that six random values of Y are generated. What is the probability that all six values are
equal to one (i.e, yi = 1, i = 1, …, 6) if the values are generated independently using the inverse
transform method (i.e., simple sampling)?

b) Assume that six random values of Y are generated. What is the probability that all six values are
equal to one if the values are generated independently using complementary random numbers?

c) Assume that six random values of Y are generated. What is the probability that all six values are
equal to one if the values are generated independently using dagger sampling?

FY x 
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Figure 5.3 Distribution function in exercise 5.5. 

0.15

0.85

0



 x 0,=

x 1,=

all other x.
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5.7 The random variable Y has the frequency function

fY(x) =  

a) Apply the inverse transform method to generate 10 values of Y. This problem should be solved
using all the random numbers in table 5.4.

b) Apply complementary random numbers to generate 10 values of Y. This problem should be
solved using the first row of the random numbers in table 5.4.

c) Apply dagger sampling to generate 10 values of Y. This problem should be solved using as many
of the random numbers in table 5.4 as needed.

d) Compare the results of the previous questions. Which sequence of random numbers is closest
to the actual probability distribution? Is this a coincidence or is there an explanation to the result?

5.8 Consider a system with three inputs,

X = g(Y1, Y2, Y3) = 

The frequency function of each input is

fY(x) = 

The system is simulated using the importance sampling function

fZ(x) = 

for each component. Table 5.5 shows five scenarios for this system. Calculate the estimated
expectation value of X.

Table 5.4 Random numbers from a U(0, 1) distribution

0.44 0.77 0.19 0.45 0.71

0.38 0.80 0.49 0.65 0.75

Table 5.5 Five scenarios for the Monte Carlo simulation in exercise 5.8.

Scenario Y1 Y2 Y3

1 1 1 1

2 0 1 1

3 1 0 1

4 1 1 1

5 1 1 0

0.1

0.9

0



 x 0,=

x 1,=

all other x.

0

1

 if Y1 Y2 Y3+  0,

if Y1 Y2 Y3+  0.=

0.1

0.9

0



 x 0,=

x 1,=

all other x.

0.4

0.6

0



 x 0,=

x 1,=

all other x,
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5.9 A system has two inputs and one output. Table 5.6 shows the results from a Monte Carlo simula-
tion of this system using importance sampling. What are the estimates of E[X] and Var[X] respec-
tively?

5.10 Consider a system X =g(Y1, Y2), where 

g(Y1, Y2) = 

The inputs are discrete random variables, and each input is either equal to 0, 5 or 10. The
probability of each state is recorded in table 5.7.

What is the optimal importance sampling function for this system?

5.11 Consider a simplified model 

Z =  = 

of the system X = g(Y), where the input Y has the density function

fY(x) = 

Use the simplified model to suggest an importance sampling function for this system.

Table 5.6 Results from the Monte Carlo simulation in exercise 5.9.

Scenario, i

Input 1 Input 2

Output 
value,

xi
Value, y1, i

Density 
function, 
fY1(y1, i)

Importance 
sampling 
function, 
fZ1(y1, i)

Value, y1, i

Density 
function, 
fY1(y1, i)

Importance 
sampling 
function, 
fZ1(y1, i)

1 90 1/100 1/40 99 1/100 1/20 379

2 20 1/100 1/160 91 1/100 1/20 202

3 81 1/100 1/40 12 1/100 1/180 173

4 87 1/100 1/40 13 1/100 1/180 197

5 96 1/100 1/40 23 1/100 1/180 215

Table 5.7 Probability distribution of the inputs in exercise 5.10.

State, x fY1(x) fY2(x)

0 0.25 0.20

5 0.50 0.60

10 0.25 0.20

Y1 Y2+

2 Y1 Y2+ 

3.25 Y1 Y2+ 



 if Y1 Y2 10,+

if 10 Y 1 Y2+ 20,

if 20 Y 1 Y2.+

g̃ Y 
Y

2Y 10–

 if Y 10,

if Y 10,

0

0.05

0.10

0.05

0





 x 0,

0 x 5, 
5 x 10,

10 x 15,
15 x.
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5.12 Table 5.8 lists the possible states of a simplified model of a system with two outputs. Suggest an
importance sampling function for this system.

5.13 Consider the system in figure 5.4, where each component has a reliability of 90%. The inputs Y1,
Y2 and Y3 are equal to 1 if a component is operational, and 0 otherwise. The output X is equal to 1
if the system is working, and 0 if it is not, i.e., 

X = 

The system is to be simulated using importance sampling. Is it more efficient to use the
importance sampling function

fZ1(y) = 

for each component, or to use the importance sampling function

fZ2(y) = 

for each component? The computation time is the same for both importance sampling
functions.

Table 5.8 Scenarios for the system in exercise 5.12.

Input, 
y

Probablity
fY(y)

Outputs from the 
simplified model

z1 z2

1 0.1 100 0

2 0.2 225 0

3 0.4 350 0

4 0.2 575 0

5 0.1 900 1

1

0

 if Y1 1 and Y2 Y3 1+=

otherwise.

0.5

0.5

0



 y 0,=

y 1,=

all other y,

0.2

0.8

0



 y 0,=

y 1,=

all other y,

Y1

Y3

Y2

Figure 5.4 The system in exercise 5.13. 
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5.14 Table 5.9 shows the results of the first 1 000 samples from a Monte Carlo simulation.

a) Calculate the estimated expectation value.

b) Suggest a sample allocation for the next batch of 1 000 samples.

5.15 Table 5.10 shows the results of a pilot study for a Monte Carlo simulation of the model g(Y1, Y2).
Suggest a sample allocation for the next batch of 100 samples.

5.16 Table 5.11 shows the results of the first 1 000 samples from a Monte Carlo simulation of a model
with two outputs. Suggest an appropriate sample allocation for the next batch of 1 000 scenarios.

5.17 Y1 and Y2 are two independent random variables with distribution functions FY1(x) and FY2(x) ac-
cording to figure 5.5. The system X = g(Y1, Y2) is simulated using stratified sampling. Strata have
been defined according to figure 5.6. 

a) Calculate the stratum weights.

b) Table 5.12 shows ten scenarios in a Monte Carlo simulation of the model g(Y1, Y2). Calculate the
estimated expectation value according to these samples.

Table 5.9 Results from the Monte Carlo simulation in exercise 5.14.

Stratum, h
Stratum weight, 

h

Number of 
samples, nh

Simulation results

1 0.4 250 50 000 260 000 000

2 0.3 400 200 000 1 000 000 000 

3 0.2 300 165 000 1 009 500 000

4 0.1 50 50 000 62 500 000

Table 5.10 Results from the Monte Carlo simulation in exercise 5.15 after a pilot study of 100 scenarios.

Stratum, 
h

Number of 
samples, nh

Estimated 
stratum mean, 

mXh

Estimated 
stratum 

variance, 

1 25 60 1 024

2 25 65 529

3 25 90 1 936

4 25 110 3 600

Table 5.11 Results from the Monte Carlo simulation in exercise 5.16.

Stratum, 
h

Stratum 
weight, h

Number of 
samples, nh

Estimated stratum mean, mXh Estimated stratum variance, 

Output 1 Output 2 Output 1 Output 2

1 0.5 200 200 0 4 900 0

2 0.3 400 260 12 22 500 9.00

3 0.2 400 290 45 10 000 30.25

xh i
h 1=

nh

 xh i
2

h 1=

nh



sXh
2

sXh
2
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Table 5.12 Results from the Monte Carlo simulation in exercise 5.17.

Scenario 1 2 3 4 5 6 7 8 9 10

Y1 0.5 1.2 1.6 2.8 3.4 4.4 4.5 5.2 5.5 5.9

Y2 1.3 4.8 2.2 5.2 5.1 3.9 2.4 4.3 0.6 3.6

X 2.1 5.7 3.3 8.5 14.7 13.6 7.3 16.9 5.7 15.6

FY2 x 

x

FY1 x 

1

0.8

654321

0.6

0.2

0.4

x

1

0.8

654321

0.6

0.2

0.4

Figure 5.5 Probability distributions of the inputs in exercise 5.17. 

Y1

Y2

h = 1 h = 2

h = 3 h = 4

5

4

654321

3

1

2

6

Figure 5.6 Strata in exercise 5.17. 
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5.18 The area of the shape in the figure below is to be estimated using stratified sampling. 

a) Define appropriate strata.

b) Calculate the corresponding stratum weights.

5.19 Alice is using her car to travel to work. She can choose between two alternative routes. Route is the
shorter one, but traffic might on the other hand be busy. Route B is longer, but there are hardly
any unforeseen traffic jams. In order to decide which way to go, Alice listens to the traffic reports
on the radio and estimates the travel time for each road, and then she chooses the route with the
shortest forecasted travel time. If the forecasted travel time is the same for both routes, she will
choose route A. The real travel time might of course be different from the forecast, and it might
turn out that the route she has chosen is slower (but then there is no turning back). 

The forecasted and real travel times on route A are correlated, but can be considered independ-
ent if we separate between low and busy traffic as well as accurate and inaccurate forecast, as
described in the table below. The forecasted travel time for route B is always U(45, 75)-distributed
and the real travel time is also U(45, 75)-distributed. The forecasted and real travel time on route
B can be considered independent.

a) Suggest appropriate strata for a simulation of Alice’s travelling, where the objective of the sim-
ulation is to estimate the expected travel time.

b) Assume that the simulation should start with a pilot study and that 100 scenarios generated in
the pilot study. How would it be appropriate to distribute the scenarios in the pilot study among
the suggested strata?

5.20 Consider a system X = g(Y1, Y2). The inputs Y1 and Y2 are independent and there are six possible
states for this system, as listed in table 5.14.

Assume that this system is simulated using stratified sampling. Two strata have been defined
so that all scenarios where Y2 = 0 belong to stratum 1 and all scenarios where Y2 = 2 belongs to
stratum 2. Moreover, assume that n/2 scenarios will be generated in stratum 1 and n/2 scenarios
in stratum 2. 

a) Is this application of stratified sampling more efficient than simple sampling with n samples?

Table 5.13 Overview of forecasted and real travel times on route A.

Situation
Probability 

[%]

Forecasted 
travel time 

[min]

Real travel time 
[min]

Low traffic, accurate forecast 60 U(30, 40) U(30, 40)

Busy traffic, inaccurate forecast 10 U(30, 40) U(60, 90)

Low traffic, inaccurate forecast 2 U(60, 90) U(30, 40)

Busy traffic, accurate forecast 28 U(60, 90) U(60, 90)

Y1

Y2

5

4

54321

3

1

2
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b) Can the efficiency of stratified sampling be improved further? If that is the case, what should
be done?

5.21 Table 5.15 shows the results from a Monte Carlo simulation. Complementary random numbers are
applied to one of the inputs of the systems, i.e., for each scenario yi that is generated, we also get
a complementary scenario yi*. A simplified model is used to generate control variates, and the ex-
pectation value of the simplified model has been calculated to 9. Moreover, stratified sampling has
been used. 100 original and 100 complementary scenarios have been generated for each stratum.
Calculate the estimate of E[X].

5.22 The objective of a simulation is to compare the two systems X1 = g1(Y) and X2 = g2(Y). The systems
have been simulated using correlated sampling, complementary random numbers (which howev-
er is applied only to one of the inputs of the systems) and importance sampling. Introduce the fol-
lowing symbols:

fZ(x) = importance sampling function,
fY(x) = density function of the input variables,

yi = outcome of the input variables in the i:th scenario,
wi = weight factor of scenario yi, i.e., fY(yi)/fZ(yi),

x1, i = output of system 1 for the i:th scenario, i.e., g1(yi),
x2, i = output of system 2 for the i:th scenario, i.e., g2(yi),
yi* = complementary scenario of yi,
wi* = weight factor of the complementary scenario yi*, i.e., fY(yi*)/fZ(yi*),

x1, i* = output of system 1 for the complementary scenario yi*, i.e., g1(yi*),
x2, i* = output of system 2 for the complementary scenario yi*, i.e., g2(yi*).

The following results have been obtained:

 = 50 300, i = 1, …, 500,

 = 49 600, i = 1, …, 500,

Table 5.14 Possible states of the system in exercise 5.20.

y1 y2 fY1(x) fY2(x) g(y1, y2)

1 0 0.2 0.01 5

1 2 0.2 0.99 1

2 0 0.6 0.01 10

2 2 0.6 0.99 2

3 0 0.2 0.01 15

3 2 0.2 0.99 7

Table 5.15 Results from the Monte Carlo simulation in exercise 5.21.

Stratum, h
Stratum 

weight, h

Results from detailed model Results from simplified model

Original scenarios,
Complementary 

scenarios,
Original scenarios,

Complementary 
scenarios,

1 0.5 1 600 1 800 1 500 1 650

2 0.3 2 400 2 200 1 900 1 800

3 0.2 3 000 3 200 2 200 2 350

xh i
i 1=

100

 xh i *

i 1=

100


zh i

i 1=

100

 zh i *

i 1=

100



wix1 i
i 1=

500



wi*x1 i *
i 1=

500


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 = 49 100, i = 1, …, 500,

 = 48 800, i = 1, …, 500.

Calculate the estimated expected difference between the two systems.

5.23 Consider a Monte Carlo simulation which is using stratified sampling, complementary random
numbers (on one input) and importance sampling (on the remaining inputs). The results of the
simulation are shown in table 5.16. What is the estimated expectation value of this system? 

5.24 Consider the system in figure 5.7. In its original configuration it has five components. Now it is
considered to add some extra redundancy to the system, by adding a backup component for com-
ponents 3–5. Each component has a reliability of 90% and the state of each component is an input
to the system. The inputs are equal to 1 if the corresponding component is operational, and 0 oth-
erwise. The output is equal to 1 if the system is working, and 0 if it is not. Thus, for the original
configuration we get the model 

X1 = g1(Y) = 

Similarly, for the second model we get

X2 = g2(Y) = 

The improved reliability of the system is to be estimated using correlated sampling and impor-
tance sampling. The importance sampling function is set up so that the probability of compo-
nents 3–5 being operational is set to 50% each, whereas the other components still each have 90%
probability of working, i.e., 

fZ1(x) = fY1(x), fZ2(x) = fY2(x), fZ3(x) = fZ4(x) = fZ5(x) =  and fZ6(x) = fY6(x).

Table 5.16 Results from the Monte Carlo simulation in exercise 5.23.

Stratum, h
Stratum 

weight, h

Samples per 
stratum, nh

Results from original 
scenarios,

Results from comple-
mentary scenarios,

1 0.5 200 1 650 1 550

2 0.3 400 3 800 4 600

3 0.2 400 7 400 6 200

wix2 i
i 1=

500



wi*x2 i *
i 1=

500



fY yh i 
fZ yh i 
------------------g yh i 

i 1=

nh 2


fY yh i * 
fZ yh i * 
---------------------g yh i * 

i 1=

nh 2



Y5

Y3

Y2

Y1 Y4

Y6

Figure 5.7 The system in exercise 5.24. 

1

0

 if Y1 Y2+  Y3Y4 Y5+  0,

otherwise.

1

0

 if Y1 Y2+  Y3Y4 Y5 Y6+ +  0,

otherwise.

0.5

0.5

0



 x 0,=

x 1,=

otherwise,
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Table 5.17 shows ten scenarios generated using these importance sampling functions.
Based on these scenarios, what is the estimated increase in reliability by adding the sixth
component?

Table 5.17 Ten scenarios from the Monte Carlo simulation in exercise 5.24.

Scenario
Component 

1
Component 

2
Component 

3
Component 

4
Component 

5
Component 

6

1 1 1 0 1 1 1

2 1 1 0 1 1 1

3 1 0 1 1 1 1

4 1 1 1 0 1 0

5 1 0 0 1 1 1

6 1 0 0 0 1 1

7 1 1 0 1 1 1

8 1 1 1 0 0 1

9 1 1 1 0 1 1

10 1 1 1 1 1 1
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Chapter 6

EFFICIENT MONTE CARLO
SIMULATIONS
The previous chapters have presented the mathematics of Monte Carlo simulation as well as some prac-
tical solutions to implement different methods when simulating a technical system. In this concluding
chapter, all those pieces are brought together in a discussion on how to design an efficient Monte Carlo
simulation.

6.1 Mathematical Model

To be added: Discussion on important steps when formulating the mathematical model…

6.2 Choice of Simulation Method

To be added: Summary of the information necessary to efficiently apply different variance reduction
technique.

To be added: Discussion on how variance reduction techniques can be combined.

6.3 Testing

To be added: Discussion on how to test and verify the results of a Monte Carlo simulation…
6.1 Mathematical Model 55
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Appendix A

PROBABILITY DISTRIBUTIONS
This appendix provides an overview of some important probability distributions.
To be added: Reference to other sources.
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Appendix B

AKABUGA DISTRICT
SIMULATION
The simulation methods presented in this compendium are demonstrated in several examples describ-
ing a simulation of the power system in the fictitious East African area Akabuga District. This appendix
provides further details of the Akabuga District simulation, which may help the reader understand the
results of the different simulation strategies.

B.1 Analysis of the System

To be added: Overview...

System Data

The values of constant parameters in the model of Akabuga District are listed in table B.1. The probabil-
ity distributions of the inputs are listed below:

= available generation capacity in the large diesel generator set = 

=

= available generation capacity in the large diesel generator set = 

=

= available generation capacity in the large diesel generator set = 

=

= total demand =

f
G1

0.1

0.9

0



 x 0,=

x 200,=

all other x,

f
G2

0.2

0.8

0



 x 0,=

x 150,=

all other x,

f
P

0.01

0.99

0



 x 0,=

x 300,=

all other x,

fDtot

0.2

0.4

0.25

0.1

0.05

0







 x 200,=

x 300,=

x 400,=

x 500,=

x 600,=

all other x,
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fC = the share of the total demand located in Akabuga =  

Enumeration of Scenarios

Table B.3 lists all possible scenarios for Akabuga District. 
To be added: Comments to the table...

Table B.1 Model constants in the Akabuga District simulation.

Symbol Explanation Value

G1 Variable operation cost of the large diesel generator set 10 ¤/kWh

G2 Variable operation cost of the small diesel generator set 12 ¤/kWh

L Loss coefficient for the transmission line 0.00005 kW–1

Available generation capacity in the hydro power plant 350 kWh/h

Table B.2 Outputs in the Akabuga District simulation.

Symbol Explanation

D1 Load in Akabuga [kWh/h]

D2 Load in Ekyaalo [kWh/h]

G1 Generation in the large diesel generator set [kWh/h]

G2 Generation in the small diesel generator set [kWh/h]

H Generation in the hydro power plant [kWh/h]

LOLO Loss of load occasion (1 if load shedding occurs, 0 otherwise)

P Transmission from Ekyaalo to Akabuga [kWh/h]

TOC Total operation cost of the system [¤/h]

U Unserved load [kWh/h]

Table B.3 Enumeration of scenarios in the Akabuga District simulation.

Scenario Dtot D1 D2 TOC LOLO fY fY·TOC fY·LOLO

1 0 0 0 200 170 30 0 1 0.000 020 0 0.000 020

2 0 0 0 200 180 20 0 1 0.000 020 0 0.000 020

3 0 0 0 300 255 45 0 1 0.000 040 0 0.000 040

4 0 0 0 300 270 30 0 1 0.000 040 0 0.000 040

5 0 0 0 400 340 60 0 1 0.000 025 0 0.000 025

6 0 0 0 400 360 40 0 1 0.000 025 0 0.000 025

7 0 0 0 500 425 75 0 1 0.000 010 0 0.000 010

8 0 0 0 500 450 50 0 1 0.000 010 0 0.000 010

9 0 0 0 600 510 90 0 1 0.000 005 0 0.000 005

10 0 0 0 600 540 60 0 1 0.000 005 0 0.000 005

11 0 0 150 200 170 30 1 800.00 1 0.000 080 0.1440 0.000 080

12 0 0 150 200 180 20 1 800.00 1 0.000 080 0.1440 0.000 080

13 0 0 150 300 255 45 1 800.00 1 0.000 160 0.2880 0.000 160

14 0 0 150 300 270 30 1 800.00 1 0.000 160 0.2880 0.000 160

15 0 0 150 400 340 60 1 800.00 1 0.000 100 0.1800 0.000 100

16 0 0 150 400 360 40 1 800.00 1 0.000 100 0.1800 0.000 100

17 0 0 150 500 425 75 1 800.00 1 0.000 040 0.0720 0.000 040

18 0 0 150 500 450 50 1 800.00 1 0.000 040 0.0720 0.000 040

19 0 0 150 600 510 90 1 800.00 1 0.000 020 0.0360 0.000 020

20 0 0 150 600 540 60 1 800.00 1 0.000 020 0.0360 0.000 020

0.5

0.5

0



 x 0.85,=

x 0.9,=

all other x.

H

P G1 G2
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21 0 200 0 200 170 30 1 700.00 0 0.000 180 0.3060 0

22 0 200 0 200 180 20 1 800.00 0 0.000 180 0.3240 0

23 0 200 0 300 255 45 2 000.00 1 0.000 360 0.7200 0.000 360

24 0 200 0 300 270 30 2 000.00 1 0.000 360 0.7200 0.000 360

25 0 200 0 400 340 60 2 000.00 1 0.000 225 0.4500 0.000 225

26 0 200 0 400 360 40 2 000.00 1 0.000 225 0.4500 0.000 225

27 0 200 0 500 425 75 2 000.00 1 0.000 090 0.1800 0.000 090

28 0 200 0 500 450 50 2 000.00 1 0.000 090 0.1800 0.000 090

29 0 200 0 600 510 90 2 000.00 1 0.000 045 0.0900 0.000 045

30 0 200 0 600 540 60 2 000.00 1 0.000 045 0.0900 0.000 045

31 0 200 150 200 170 30 1 700.00 0 0.000 720 1.2240 0

32 0 200 150 200 180 20 1 800.00 0 0.000 720 1.2960 0

33 0 200 150 300 255 45 2 660.00 0 0.001 440 3.8304 0

34 0 200 150 300 270 30 2 840.00 0 0.001 440 4.0896 0

35 0 200 150 400 340 60 3 680.00 0 0.000 900 3.3120 0

36 0 200 150 400 360 40 3 800.00 1 0.000 900 3.4200 0.000 900

37 0 200 150 500 425 75 3 800.00 1 0.000 360 1.3680 0.000 360

38 0 200 150 500 450 50 3 800.00 1 0.000 360 1.3680 0.000 360

39 0 200 150 600 510 90 3 800.00 1 0.000 180 0.6840 0.000 180

40 0 200 150 600 540 60 3 800.00 1 0.000 180 0.6840 0.000 180

41 300 0 0 200 170 30 0 0 0.001 980 0 0

42 300 0 0 200 180 20 0 0 0.001 980 0 0

43 300 0 0 300 255 45 0 0 0.003 960 0 0

44 300 0 0 300 270 30 0 0 0.003 960 0 0

45 300 0 0 400 340 60 0 1 0.002 475 0 0.002 475

46 300 0 0 400 360 40 0 1 0.002 475 0 0.002 475

47 300 0 0 500 425 75 0 1 0.000 990 0 0.000 990

48 300 0 0 500 450 50 0 1 0.000 990 0 0.000 990

49 300 0 0 600 510 90 0 1 0.000 495 0 0.000 495

50 300 0 0 600 540 60 0 1 0.000 495 0 0.000 495

51 300 0 150 200 170 30 0 0 0.007 920 0 0

52 300 0 150 200 180 20 0 0 0.007 920 0 0

53 300 0 150 300 255 45 0 0 0.015 840 0 0

54 300 0 150 300 270 30 0 0 0.015 840 0 0

55 300 0 150 400 340 60 650.46 0 0.009 900 6.4396 0

56 300 0 150 400 360 40 774.00 0 0.009 900 7.6626 0

57 300 0 150 500 425 75 1 800.00 1 0.003 960 7.1280 0.003 960

58 300 0 150 500 450 50 1 800.00 1 0.003 960 7.1280 0.003 960

59 300 0 150 600 510 90 1 800.00 1 0.001 980 3.5640 0.001 980

60 300 0 150 600 540 60 1 800.00 1 0.001 980 3.5640 0.001 980

61 300 200 0 200 170 30 0 0 0.017 820 0 0

62 300 200 0 200 180 20 0 0 0.017 820 0 0

63 300 200 0 300 255 45 0 0 0.035 640 0 0

64 300 200 0 300 270 30 0 0 0.035 640 0 0

65 300 200 0 400 340 60 542.05 0 0.022 275 12.0742 0

66 300 200 0 400 360 40 645.00 0 0.022 275 14.0742 0

67 300 200 0 500 425 75 1 537.81 0 0.008 910 13.7019 0

68 300 200 0 500 450 50 1 545.00 0 0.008 910 13.7660 0

Table B.3 Enumeration of scenarios in the Akabuga District simulation.

Scenario Dtot D1 D2 TOC LOLO fY fY·TOC fY·LOLOP G1 G2
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Simulation Results

Table shows the results of all tests of the Akabuga District simulation.
To be added: Comments...

B.2 Simulation Code

Below follows the Matlab code used for simulation of Akabuga District. Notice that the code does not
always follows a good programming style; for example, calculations that are carried out in several of the
simulations (such as applying the inverse transform method to generate input values) could have been
written as separate subroutines (i.e., functions in Matlab). However, in these tests computation time is
of great importance, and scripts are faster than functions. The only exception is the mathematical
model, where at least the detailed mathematical model will be called the same number of times in all
simulations.

akabugadistrictscenario.m

This is the core of the simulation: the detailed mathematical model of the system. It takes a scenario as
inputs and computes the total operation cost as well as the binary loss of load occasion variable.

function [toc,lolo] = akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2)
%AKABUGADISTRICTSCENARIO Calculates samples for a scenario in Akabuga District.

69 300 200 0 600 510 90 2 000.00 1 0.004 455 8.9100 0.004 455

70 300 200 0 600 540 60 2 000.00 1 0.004 455 8.9100 0.004 455

71 300 200 150 200 170 30 0 0 0.071 280 0 0

72 300 200 150 200 180 20 0 0 0.071 280 0 0

73 300 200 150 300 255 45 0 0 0.142 560 0 0

74 300 200 150 300 270 30 0 0 0.142 560 0 0

75 300 200 150 400 340 60 542.05 0 0.089 100 48.2967 0

76 300 200 150 400 360 40 645.00 0 0.089 100 57.4695 0

77 300 200 150 500 425 75 1 537.81 0 0.035 640 54.8076 0

78 300 200 150 500 450 50 1 545.00 0 0.035 640 55.0638 0

79 300 200 150 600 510 90 2 640.56 0 0.017 820 47.0548 0

80 300 200 150 600 540 60 2 650.46 0 0.017 820 47.2312 0

Table B.4 Compilation of simulation results for Akabuga District.

Simulation method
Average 

simulation 
time [ms]

MTOC MLOLO

Min. Mean Max. Var. Eff. Min. Mean Max. Var. Eff.

Enumeration 27 443.4 0 0 0.0331 0 0

Simple sampling 8 366.1 436.0 488.8 480.7 3 758 0.0200 0.0326 0.0480 0.000034 0.000263

Complementary ran-
dom numbers: 
(G, D), (G*, D*)

11 391.9 444.0 484.8 311.2 3 303 0.0160 0.0332 0.0520 0.000036 0.000384

Complementary ran-
dom numbers: 
(G, D), (G, D*), 

(G, D*), (G*, D*)

8 388.2 441.9 491.6 522.6 4 120 0.0210 0.0331 0.0450 0.000034 0.000266

Dagger sampling 11 408.3 444.7 509.0 438.7 4 995 0.0210 0.0334 0.0480 0.000029 0.000327

Control variates 13 424.7 442.2 467.4 53.4 688 0.0250 0.0327 0.0410 0.000012 0.000151

Importance sampling 8 416.1 440.1 474.6 155.6 1 292 0.0262 0.0331 0.0435 0.000013 0.000104

Stratified sampling 12 417.9 443.2 476.1 134.2 1 578 0.0330 0.0331 0.0332 0.000000 0.000000

Table B.3 Enumeration of scenarios in the Akabuga District simulation.

Scenario Dtot D1 D2 TOC LOLO fY fY·TOC fY·LOLOP G1 G2
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%AKABUGADISTRICTSCENARIO Calculates samples for a scenario in Akabuga District.
%   [TOC,LOLO] = MJIREGIONSCENARIO(G1MAX,G2MAX,PMAX,DTOT,D1,D2) calculates
%   operation cost and loss of load for a scenario in Akabuga District.
%   G1MAX and %   G2MAX are the available capacities in the diesel generator
%   sets, PMAX is the available transmission capacity, DTOT, D1 and D2 are 
%   the total load, load in Akabuga and load in Ekyaalo respectively.
 
% Calculate possible export from Ekyaalo
Pexp = min(Pmax,350-D2);

% Calculate generation in Akabuga
Pimp = Pexp - 5e-5*Pexp^2;
if D1 <= Pimp
    % Load in Akabuga can be covered by import from Ekyaalo
    toc = 0; lolo = 0; return
else
    U1 = D1 - Pimp;
end
 
if U1 <= G1max
    % Load in Akabuga can be covered by import and the larger diesel
    % generator set
    toc = 10*U1; lolo = 0; return
else
    U1 = U1 - G1max;
end
if U1 <= G2max
    % Load in Akabuga can be covered by import and both diesel
    % generator sets
    toc = 10*G1max + 12*U1; lolo = 0; return
else
    % Load shedding
    toc = 10*G1max + 12*G2max; lolo = 1; return
end

akabugadistrictsimplesampling.m

This script executes one simulation using simple sampling. The principle is straightforward: generate a
scenario by applying the inverse transform method on each input, analyse the scenario using the math-
ematical model and store the results.

% Simple sampling of Akabuga District
tocsum = 0; lolosum = 0;
for i = 1:n
    % Randomise scenario
    u = rand;
    if u <= .9
        G1max = 200;
    else
        G1max = 0;
    end
    u = rand;
    if u <= .8
        G2max = 150;
    else
        G2max = 0;
    end
    u = rand;
    if u <= .99
        Pmax = 300;
    else
        Pmax = 0;
    end
    u = rand;
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    if u < .2
        Dtot = 200;
    elseif u < .6
        Dtot = 300;
    elseif u < .85
        Dtot = 400;
    elseif u < .95
        Dtot = 500;
    else
        Dtot = 600;
    end
    u = rand;
    if u <= .5
        c = .85;
    else
        c = .9;
    end
    D1 = c*Dtot; D2 = (1-c)*Dtot;
    % Analyse scenario
    [toci,loloi] = akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
    % Store results
    tocsum = tocsum + toci;
    lolosum = lolosum + loloi;
end
% Compute estimates
mTOC = tocsum/n;
mLOLO = lolosum/n;

akabugadistrictcomplrandnumb2.m

This script executes one simulation using complementary random numbers. In this variant each origi-
nal scenario, (Gtot, D), generates one complementary scenario, (Gtot*, D*). The principle is the same as
for simple sampling, except for the additional code that switches between generating original and com-
plementary random numbers. However, as we can see in table B.4, this tiny extra code increases the
average simulation time by approximately 35%!

% Simulation of Akabuga District using complementary random numbers for total
% load and total generation capacity (1 complementary scenario)
tocsum = 0; lolosum = 0; cycle = 1;
for i = 1:n
    % Randomise original scenario
    if cycle == 1
        uG = rand; uD = rand; cycle = 2;
    else
        uG = 1 - uG; uD = 1 - uD; cycle = 1;
    end
    if uG > .28
        G1max = 200; G2max = 150;
    elseif uG > .1
        G1max = 200; G2max = 0;
    elseif uG > .02
        G1max = 0; G2max = 150;
    else
        G1max = 0; G2max = 0;
    end
    u = rand;
    if u <= .99
        Pmax = 300;
    else
        Pmax = 0;
    end
    if uD < .2
        Dtot = 200;
    elseif uD < .6
        Dtot = 300;
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    elseif uD < .85
        Dtot = 400;
    elseif uD < .95
        Dtot = 500;
    else
        Dtot = 600;
    end
    u = rand;
    if u <= .5
        c = .85;
    else
        c = .9;
    end
    D1 = c*Dtot; D2 = (1-c)*Dtot;
    % Analyse original scenario
    [toci,loloi] = akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
    % Store results
    tocsum = tocsum + toci;
    lolosum = lolosum + loloi;
end
% Compute estimates
mTOC = tocsum/n;
mLOLO = lolosum/n;

akabugadistrictcomplrandnumb4.m

This script executes one simulation using complementary random numbers. In this variant each origi-
nal scenario, (Gtot, D), generates three complementary scenarios, (Gtot*, D*), (Gtot*, D*) and (Gtot*, D*)
respectively. The principle is the same as for simple sampling, except for the additional code that
switches between generating original and complementary random numbers. This variant require only
75% less pseudorandom numbers to generate the values of the generation capacity and the total load,
which compensates for the extra time to switch between generating original and complementary ran-
dom numbers; therefore the average simulation time is more or less the same as for simple sampling.

% Simulation of Akabuga District using complementary random numbers for total
% load and total generation capacity (3 complementary scenario)
tocsum = 0; lolosum = 0; cycle = 1;
for i = 1:n
    % Randomise original scenario
    if cycle == 1
        uG = rand; uD = rand; cycle = 2;
    elseif cycle == 2
        uD = 1 - uD; cycle = 3;
    elseif cycle == 3
        uG = 1 - uG; cycle = 4;
    else
        uD = 1 - uD; cycle = 1;
    end
    if uG > .28
        G1max = 200; G2max = 150;
    elseif uG > .1
        G1max = 200; G2max = 0;
    elseif uG > .02
        G1max = 0; G2max = 150;
    else
        G1max = 0; G2max = 0;
    end
    u = rand;
    if u <= .99
        Pmax = 300;
    else
        Pmax = 0;
    end
    if uD < .2
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        Dtot = 200;
    elseif uD < .6
        Dtot = 300;
    elseif uD < .85
        Dtot = 400;
    elseif uD < .95
        Dtot = 500;
    else
        Dtot = 600;
    end
    u = rand;
    if u <= .5
        c = .85;
    else
        c = .9;
    end
    D1 = c*Dtot; D2 = (1-c)*Dtot;
    % Analyse original scenario
    [toci,loloi] = akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
    % Store results
    tocsum = tocsum + toci;
    lolosum = lolosum + loloi;
end
% Compute estimates
mTOC = tocsum/n;
mLOLO = lolosum/n;

akabugadistrictcontrolvariates.m

This script executes one simulation using control variates. First, a probabilistic production cost simula-
tion is carried out using the akabugadistrictppc script (see below). Then, simple sampling is
applied to the difference between the output of the detailed model of the Akabuga district and the sim-
plified model. Finally, the expectation values of the control variates are added to the estimated differ-
ences.

% Simulation of Akabuga District using control variates
akabugadistrictppc
tocdiffsum = 0; lolodiffsum = 0;
for i = 1:n
    % Randomise scenario
    u = rand;
    if u <= .9
        G1max = 200;
    else
        G1max = 0;
    end
    u = rand;
    if u <= .8
        G2max = 150;
    else
        G2max = 0;
    end
    u = rand;
    if u <= .99
        Pmax = 300;
    else
        Pmax = 0;
    end
    u = rand;
    if u < .2
        Dtot = 200;
    elseif u < .6
        Dtot = 300;
    elseif u < .85
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        Dtot = 400;
    elseif u < .95
        Dtot = 500;
    else
        Dtot = 600;
    end
    u = rand;
    if u <= .5
        c = .85;
    else
        c = .9;
    end
    D1 = c*Dtot; D2 = (1-c)*Dtot;
    % Analyse scenario
    [toci,loloi] = akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
    [toctilde,lolotilde] = ...
        simpleakabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
    % Store results
    tocdiffsum = tocdiffsum + toci - toctilde;
    lolodiffsum = lolodiffsum + loloi - lolotilde;
end
% Compute estimates
mTOC = tocdiffsum/n + ETOCppc;
mLOLO = lolodiffsum/n + LOLPppc;

akabugadistrictppc.m

This script applies probabilistic production cost simulation (see appendix C) to the Akabuga district.
The equivalent load duration curves (F1, F2 and F3) are stored as row vectors, where the first element
represents the value of the duration curve for 0  x < 50, the second element is for 50  x < 100, etc.

% Probabilistic production cost simulation of Akabuga District
F1 = [1 1 1 1 .8 .8 .4 .4 .15 .15 .05 .05 0 0 0 0 0 0 0 0];
F2 = .9*F1 + .1*[1 1 1 1 F1(1:end-4)];
F3 = .8*F2 + .2*[1 1 1 F2(1:end-3)];
EENS1 = 0;
for i = (350/50):19
    EENS1 = EENS1 + 50*F1(i+1);
end
EENS2 = 0;
for i = (550/50):19
    EENS2 = EENS2 + 50*F2(i+1);
end
EENS3 = 0;
for i = (700/50):19
    EENS3 = EENS3 + 50*F3(i+1);
end
ETOCppc = 10*(EENS1-EENS2) + 12*(EENS2 - EENS3);
LOLPppc = F3(700/50+1);

simpleakabugadistrictscenario.m

This is the simplified mathematical model. It takes a scenario as inputs and computes the total opera-
tion cost as well as the binary loss of load occasion variable.

function [toc,lolo] = simpleakabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2)
%SIMPLEAKABUGADISTRICTSCENARIO Calculates samples for a scenario in Akabuga 
%                              District using a simplified model.
%   [TOC,LOLO] = SIMPLEAKABUGADISTRICTSCENARIO(G1MAX,G2MAX,PMAX,DTOT,D1,D2) 
%   calculates %   operation cost and loss of load for a scenario in Akabuga 
%   District. G1MAX and G2MAX are the available capacities in the diesel 
%   generator sets, PMAX is the available transmission capacity, DTOT, D1 and
%   D2 are the total load, load in Akibuga and load in Ekyaalo respectively.
 
if Dtot <= 350
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    % Total load can be covered by hydro power
    toc = 0; lolo = 0; return
else
    U = Dtot - 350;
end
 
if U <= G1max
    % Total load can be covered by hydro power and the larger diesel
    % generator set
    toc = 10*U; lolo = 0; return
else
    U = U - G1max;
end
if U <= G2max
    % Total load can be covered by hydro power and both diesel
    % generator sets
    toc = 10*G1max + 12*U; lolo = 0; return
else
    % Load shedding
    toc = 10*G1max + 12*G2max; lolo = 1; return
end

akabugadistrictimportancesampling.m

This script executes one simulation using importance sampling. The principle is mostly the same as for
simple sampling, except that scenarios are randomised according to the importance sampling functions
and that each observation is multiplied by a weight factor. The weight factors for each input are
assigned at the same time as the random numbers are computed. For example, if the large generator is
available, the weight factor is wG1 = fG1(200)/fZ1(200) = 0.9/0.8 = 1.125.

% Importance sampling of Akabuga District
tocsum = 0; lolosum = 0;
for i = 1:n
    % Randomise scenario
    u = rand;
    if u <= .8
        G1max = 200; wG1max = 1.125;
    else
        G1max = 0; wG1max = .5;
    end
    u = rand;
    if u <= .8
        G2max = 150; wG2max = 1;
    else
        G2max = 0; wG2max = 1;
    end
    u = rand;
    if u <= .98
        Pmax = 300; wPmax = .99/.98;
    else
        Pmax = 0; wPmax = .5;
    end
    u = rand;
    if u <= .2
        Dtot = 200; wDtot = 1;
    elseif u <= .4
        Dtot = 300; wDtot = 2;
    elseif u <= .6
        Dtot = 400; wDtot = 1.25;
    elseif u <= .8
        Dtot = 500; wDtot = .5;
    else
        Dtot = 600; wDtot = .25;
    end
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    u = rand;
    if u <= .5
        c = .85;
    else
        c = .9;
    end
    D1 = c*Dtot; D2 = (1-c)*Dtot;
    % Analyse scenario
    [toci,loloi] = akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
    % Store results
    w = wG1max*wG2max*wPmax*wDtot;
    tocsum = tocsum + w*toci;
    lolosum = lolosum + w*loloi;
end
% Compute estimates
mTOC = tocsum/n;
mLOLO = lolosum/n;

akabugadistrictstratifiedsampling.m

This script executes one simulation using importance sampling. First, the stratum weights are com-
puted and analytical results are assigned to those strata where it is possible. The next step is to run a
pilot study; the number of samples are the same for all strata for which there is no analytical result. The
randomisation of the input values is modified to take into account the probability distribution of the
inputs for the corresponding strata. Consider for example the randomisation of the total load, which
starts by checking if the load is fixed (i.e., only has one possible outcome) for the stratum in question. If
that is not the case, the pseudorandom number u is scaled to fit the possible range of total load values
for the stratum and then the inverse transform method is applied to the scaled pseudorandom number
(cf. example 5.6).

After the pilot study, estimates of the variance for all sampled strata are calculated and the sample
allocation for the next batch of scenarios is computed according to algorithm 5.3. Scenarios are then
generated in the same way as in the pilot study. The results for each stratum are stored and a new batch
is generated according to an updated sample allocation. At the end of the simulation, the results are
weighted together according to the stratum weights.

% Stratified sampling of Akabuga District
 
% Define strata
L = 14; 
omega = [.01*.02 ...
         .01*.08 ...
         .01*.18*.2 ...
         .01*.18*.8 ...
         .01*.72*.6 ... % Stratum 5
         .01*.72*.25 ...
         .01*.72*.15 ...
         .99*.02*.6 + .99*.08*.6 + .99*.18*.6 + .99*.72*.6 ...
         .99*.02*.4 ...
         .99*.08*.25 ... % Stratum 10
         .99*.08*.15 ...
         .99*.18*.35 ...
         .99*.18*.05 ...
         .99*.72*.4];
mTOCh = zeros(1,L); mLOLOh = zeros(1,L);
sTOCh = zeros(1,L); sLOLOh = zeros(1,L);
muTOCh = NaN(1,L); muLOLOh = NaN(1,L);
muTOCh(1) = 0; muLOLOh(1) = 1;
muTOCh(2) = 1800; muLOLOh(2) = 1;
muTOCh(4) = 2000; muLOLOh(4) = 1;
muTOCh(7) = 3800; muLOLOh(7) = 1;
muTOCh(8) = 0; muLOLOh(8) = 0;
muTOCh(9) = 0; muLOLOh(9) = 1;
muTOCh(11) = 1800; muLOLOh(11) = 1;
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muTOCh(13) = 2000; muLOLOh(13) = 1;
nh = zeros(1,L);
tocsumh = zeros(1,L); lolosumh = zeros(1,L);
toc2sumh = zeros(1,L); lolo2sumh = zeros(1,L);
 
% Pilot study
nhpilot = 25;
for h = 1:L
    if isnan(muTOCh(h))
        for i = 1:nhpilot
            if h == 3 || h == 12
                G1max = 200; G2max = 0; 
            elseif h == 5 || h == 6 || h == 14
                G1max = 200; G2max = 150; 
            elseif h == 10
                G1max = 0; G2max = 150; 
            end
            if h <= 7
                Pmax = 0;
            else
                Pmax = 300;
            end
            if h == 3
                Dtot = 200;
            elseif h == 6 || h == 10
                Dtot = 400;
            else
                u = rand;
                if h == 4
                    u = .8*u + .2;
                elseif h == 5 || h == 8
                    u = .6*u;
                elseif h == 12
                    u = .35*u + .6;
                elseif h == 14
                    u = .4*u + .6;
                end
                if u < .2
                    Dtot = 200;
                elseif u < .6
                    Dtot = 300;
                elseif u < .85
                    Dtot = 400;
                elseif u < .95
                    Dtot = 500;
                else
                    Dtot = 600;
                end
            end
            u = rand;
            if u <= .5
                c = .85;
            else
                c = .9;
            end
            D1 = c*Dtot; D2 = (1-c)*Dtot;
            % Analyse scenario
            [toci,loloi] = ...
                akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
            % Store results
            tocsumh(h) = tocsumh(h) + toci; 
            toc2sumh(h) = toc2sumh(h) + toci^2;
            lolosumh(h) = lolosumh(h) + loloi; 
            lolo2sumh(h) = lolo2sumh(h) + loloi^2;
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        end
        nh(h) = nhpilot;
        mTOCh(h) = tocsumh(h)/nh(h); 
        sTOCh(h) = toc2sumh(h)/nh(h) - (mTOCh(h))^2;
        mLOLOh(h) = lolosumh(h)/nh(h); 
        sLOLOh(h) = lolo2sumh(h)/nh(h) - (mLOLOh(h))^2;
    else
        mTOCh(h) = muTOCh(h);
        mLOLOh(h) = muLOLOh(h);
    end
end
npilot = sum(nh);
 
% Simulation
b = 0;
while sum(nh) < n
    b = b + 1;
    % Determine Neyman allocation
    ntarget = npilot + 50*b;
    nhtarget = (ntarget*omega.*sTOCh/(omega*sTOCh') + ...
        ntarget*omega.*sLOLOh/(omega*sLOLOh'))/2;
    nhbtarget = nhtarget - nh;
    Hplus = nhbtarget > 0; nplus = sum(nhbtarget(Hplus));
    Hminus = nhbtarget < 0; nminus = -sum(nhbtarget(Hminus));
    nhb = zeros(1,L);
    nhb(Hplus) = round((1-nminus/nplus)*nhbtarget(Hplus));
    nh = nh + nhb;
    for h = 1:L
        if isnan(muTOCh(h))
            for i = 1:nhb(h)
                if h == 3 || h == 12
                    G1max = 200; G2max = 0;
                elseif h == 5 || h == 6 || h == 14
                    G1max = 200; G2max = 150;
                elseif h == 10
                    G1max = 0; G2max = 150;
                end
                if h <= 7
                    Pmax = 0;
                else
                    Pmax = 300;
                end
                if h == 3
                    Dtot = 200;
                elseif h == 6 || h == 10
                    Dtot = 400;
                else
                    u = rand;
                    if h == 4
                        u = .8*u + .2;
                    elseif h == 5 || h == 8
                        u = .6*u;
                    elseif h == 12
                        u = .35*u + .6;
                    elseif h == 14
                        u = .4*u + .6;
                    end
                    if u < .2
                        Dtot = 200;
                    elseif u < .6
                        Dtot = 300;
                    elseif u < .85
                        Dtot = 400;
                    elseif u < .95
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                        Dtot = 500;
                    else
                        Dtot = 600;
                    end
                end
                u = rand;
                if u <= .5
                    c = .85;
                else
                    c = .9;
                end
                D1 = c*Dtot; D2 = (1-c)*Dtot;
                % Analyse scenario
                [toci,loloi] = ...
                    akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
                % Store results
                tocsumh(h) = tocsumh(h) + toci; 
                toc2sumh(h) = toc2sumh(h) + toci^2;
                lolosumh(h) = lolosumh(h) + loloi; 
                lolo2sumh(h) = lolo2sumh(h) + loloi^2;
            end
            mTOCh(h) = tocsumh(h)/nh(h); 
            sTOCh(h) = toc2sumh(h)/nh(h) - (mTOCh(h))^2;
            mLOLOh(h) = lolosumh(h)/nh(h); 
            sLOLOh(h) = lolo2sumh(h)/nh(h) - (mLOLOh(h))^2;
        end
    end
end
 
% Compile final results
mTOC = omega*mTOCh';
mLOLO = omega*mLOLOh';

akabugadistrictevaluation.m

This script is used to test and compare the results of different simulation method. First, the true expec-
tation values of the outputs are computed using enumeration. Then the same number of samples is col-
lected in each simulation, and number of tests are the same for all methods. Moreover, each test run
uses the same seed for the random number generator for all methods. This means that two methods
that generate scenarios in exactly the same way (such as simple sampling and control variates) will use
the same scenarios in each test run.

The time of each simulation run is measured using the built-in Matlab timer (tic and toc). Notice
that the execution time will vary slightly every time this script is run, depending on which other tasks
are running on the same computer, how much memory that is available, etc. 

The last part of the script presents the results of the tests on the screen.

clear
akabugadistrictenumeration

% Evaluation of simulation methods for Akabuga District
n = 1000; % Number of samples per simulation
ntest = 100; % Number of tests of each simulation method
simplesamplingres = zeros(3,ntest);
complrandnumbres2 = zeros(3,ntest);
complrandnumbres4 = zeros(3,ntest);
daggersamplingres = zeros(3,ntest);
controlvariatesres = zeros(3,ntest);
importancesamplingres = zeros(3,ntest);
stratifiedsamplingres = zeros(3,ntest);
 
for test = 1:ntest
    rng(test,'twister'); % Seed for random number generator
    tstart = tic;
    akabugadistrictsimplesampling
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    simplesamplingres(3,test) = toc(tstart);
    simplesamplingres(1,test) = mTOC;
    simplesamplingres(2,test) = mLOLO;
    rng(test,'twister'); % Seed for random number generator
    tstart = tic;
    akabugadistrictcomplrandnumb2
    complrandnumbres2(3,test) = toc(tstart);
    complrandnumbres2(1,test) = mTOC;
    complrandnumbres2(2,test) = mLOLO;
    rng(test,'twister'); % Seed for random number generator
    tstart = tic;
    akabugadistrictcomplrandnumb4
    complrandnumbres4(3,test) = toc(tstart);
    complrandnumbres4(1,test) = mTOC;
    complrandnumbres4(2,test) = mLOLO;
    rng(test,'twister'); % Seed for random number generator
    tstart = tic;
    akabugadistrictdaggersampling
    daggersamplingres(3,test) = toc(tstart);
    daggersamplingres(1,test) = mTOC;
    daggersamplingres(2,test) = mLOLO;
    rng(test,'twister'); % Seed for random number generator
    tstart = tic;
    akabugadistrictcontrolvariates
    controlvariatesres(3,test) = toc(tstart);
    controlvariatesres(1,test) = mTOC;
    controlvariatesres(2,test) = mLOLO;
    rng(test,'twister'); % Seed for random number generator
    tstart = tic;
    akabugadistrictimportancesampling
    importancesamplingres(3,test) = toc(tstart);
    importancesamplingres(1,test) = mTOC;
    importancesamplingres(2,test) = mLOLO;
    rng(test,'twister'); % Seed for random number generator
    tstart = tic;
    akabugadistrictstratifiedsampling
    stratifiedsamplingres(3,test) = toc(tstart);
    stratifiedsamplingres(1,test) = mTOC;
    stratifiedsamplingres(2,test) = mLOLO;
end
 
avsimtime = 1000*mean(simplesamplingres(3,:));
fprintf('Simple sampling (Average simulation time: %.1f ms)\n', avsimtime);
tocres = simplesamplingres(1,:);
fprintf('  TOC - Min:% 8.1f   Mean:% 8.1f   Max:% 8.1f', ...
    min(tocres),mean(tocres),max(tocres));
fprintf('  Var: % 8.3f   Eff: %f\n', var(tocres), avsimtime*var(tocres));
lolores = simplesamplingres(2,:);
fprintf(' LOLO - Min:% 8.4f   Mean:% 8.4f   Max:% 8.4f', ...
    min(lolores),mean(lolores),max(lolores));
fprintf('  Var: %.6f   Eff: %f\n', var(lolores), avsimtime*var(lolores));
 
avsimtime = 1000*mean(complrandnumbres2(3,:));
fprintf(['Complementary random numbers with 1 complementary scenario ' ...
    '(Average simulation time: %.1f ms)\n'], avsimtime);
tocres = complrandnumbres2(1,:);
fprintf('  TOC - Min:% 8.1f   Mean:% 8.1f   Max:% 8.1f', ...
    min(tocres),mean(tocres),max(tocres));
fprintf('  Var: % 8.3f   Eff: %f\n', var(tocres), avsimtime*var(tocres));
lolores = complrandnumbres2(2,:);
fprintf(' LOLO - Min:% 8.4f   Mean:% 8.4f   Max:% 8.4f', ...
    min(lolores),mean(lolores),max(lolores));
fprintf('  Var: %.6f   Eff: %f\n', var(lolores), avsimtime*var(lolores));
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avsimtime = 1000*mean(complrandnumbres4(3,:));
fprintf(['Complementary random numbers with 3 complementary scenario ' ...
    '(Average simulation time: %.1f ms)\n'], avsimtime);
tocres = complrandnumbres4(1,:);
fprintf('  TOC - Min:% 8.1f   Mean:% 8.1f   Max:% 8.1f', ...
    min(tocres),mean(tocres),max(tocres));
fprintf('  Var: % 8.3f   Eff: %f\n', var(tocres), avsimtime*var(tocres));
lolores = complrandnumbres4(2,:);
fprintf(' LOLO - Min:% 8.4f   Mean:% 8.4f   Max:% 8.4f', ...
    min(lolores),mean(lolores),max(lolores));
fprintf('  Var: %.6f   Eff: %f\n', var(lolores), avsimtime*var(lolores));
 
avsimtime = 1000*mean(daggersamplingres(3,:));
fprintf('Dagger sampling (Average simulation time: %.1f ms)\n', avsimtime);
tocres = daggersamplingres(1,:);
fprintf('  TOC - Min:% 8.1f   Mean:% 8.1f   Max:% 8.1f', ...
    min(tocres),mean(tocres),max(tocres));
fprintf('  Var: % 8.3f   Eff: %f\n', var(tocres), avsimtime*var(tocres));
lolores = daggersamplingres(2,:);
fprintf(' LOLO - Min:% 8.4f   Mean:% 8.4f   Max:% 8.4f', ...
    min(lolores),mean(lolores),max(lolores));
fprintf('  Var: %.6f   Eff: %f\n', var(lolores), avsimtime*var(lolores));
 
avsimtime = 1000*mean(controlvariatesres(3,:));
fprintf('Control variates (Average simulation time: %.1f ms)\n', avsimtime);
tocres = controlvariatesres(1,:);
fprintf('  TOC - Min:% 8.1f   Mean:% 8.1f   Max:% 8.1f', ...
    min(tocres),mean(tocres),max(tocres));
fprintf('  Var: % 8.3f   Eff: %f\n', var(tocres), avsimtime*var(tocres));
lolores = controlvariatesres(2,:);
fprintf(' LOLO - Min:% 8.4f   Mean:% 8.4f   Max:% 8.4f', ...
    min(lolores),mean(lolores),max(lolores));
fprintf('  Var: %.6f   Eff: %f\n', var(lolores), avsimtime*var(lolores));
 
avsimtime = 1000*mean(importancesamplingres(3,:));
fprintf('Importance sampling (Average simulation time: %.1f ms)\n', avsimtime);
tocres = importancesamplingres(1,:);
fprintf('  TOC - Min:% 8.1f   Mean:% 8.1f   Max:% 8.1f', ...
    min(tocres),mean(tocres),max(tocres));
fprintf('  Var: % 8.3f   Eff: %f\n', var(tocres), avsimtime*var(tocres));
lolores = importancesamplingres(2,:);
fprintf(' LOLO - Min:% 8.4f   Mean:% 8.4f   Max:% 8.4f', ...
    min(lolores),mean(lolores),max(lolores));
fprintf('  Var: %.6f   Eff: %f\n', var(lolores), avsimtime*var(lolores));
 
avsimtime = 1000*mean(stratifiedsamplingres(3,:));
fprintf('Stratified sampling (Average simulation time: %.1f ms)\n', avsimtime);
tocres = stratifiedsamplingres(1,:);
fprintf('  TOC - Min:% 8.1f   Mean:% 8.1f   Max:% 8.1f', ...
    min(tocres),mean(tocres),max(tocres));
fprintf('  Var: % 8.3f   Eff: %f\n', var(tocres), avsimtime*var(tocres));
lolores = stratifiedsamplingres(2,:);
fprintf(' LOLO - Min:% 8.4f   Mean:% 8.4f   Max:% 8.4f', ...
    min(lolores),mean(lolores),max(lolores));
fprintf('  Var: %.6f   Eff: %f\n', var(lolores), avsimtime*var(lolores));

akabugadistrictenumeration.m

This script computes the expectation values of a simulation of Akabuga District using enumeration. The
possible states of the inputs and the probability of each state are stored in the matrices Y and fY respec-
tively. The script then loops through all possible scenarios and calculates the output of the scenario as
well as the probability of the scenario. The results are computed according to the definition of expecta-
tion value for discrete probability distributions and the results are presented on the screen.
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% Computation of true expectation values for simulation of Akabuga District
 
tstart = tic;
Y = zeros(5,5); fY = zeros(size(Y));
Y(1,1:2) = [0 200]; fY(1,1:2) = [.1 .9]; 
Y(2,1:2) = [0 150]; fY(2,1:2) = [.2 .8]; 
Y(3,1:2) = [0 300]; fY(3,1:2) = [.01 .99];
Y(4,:) = 200:100:600; fY(4,:) = [.2 .4 .25 .1 .05];
Y(5,1:2) = [.85 .9]; fY(5,1:2) = [.5 .5];
muTOC = 0; muTOCtilde = 0;
muLOLO = 0; muLOLOtilde = 0;
 
for i1 = 1:2
    for i2 = 1:2
        for i3 = 1:2
            for i4 = 1:5
                for i5 = 1:2
                    G1max = Y(1,i1);
                    G2max = Y(2,i2);
                    Pmax = Y(3,i3);
                    Dtot = Y(4,i4);
                    c = Y(5,i5);
                    D1 = c*Dtot; D2 = (1-c)*Dtot;
                    [toci,loloi] = ...
                        akabugadistrictscenario(G1max,G2max,Pmax,Dtot,D1,D2);
                    fYi = fY(1,i1)*fY(2,i2)*fY(3,i3)*fY(4,i4)*fY(5,i5);
                    muTOC = muTOC + fYi*toci;
                    muLOLO = muLOLO + fYi*loloi;
                end
            end
        end
    end
end
comptime = toc(tstart);
 
fprintf('Enumeration (Computation time: %.1f ms)\n', 1000*comptime);
fprintf('  TOC - % 8.1f\n', muTOC);
fprintf(' LOLO - % 8.4f\n', muLOLO);
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Appendix C

PROBABILISTIC PRODUCTION
COST SIMULATION
This appendix provides a short overview of probabilistic production cost simulation, which is an analyt-
ical model for calculation of the operation cost and reliability of power systems. The model used in this
simulation method is rather limited, but it can be used to generate control variates for more detailed
electricity market simulation (such as in the example of Akabuga District). Further details on probabil-
istic production cost simulation can be found in the literature listed at the end of the appendix.

Further reading

• H. Baleriaux, E. Jamoulle & F. Linard de Guertechin, “Simulation de l’explittion d’un parc de
machines thermiques de production d’électricité couplé à des stations de pompage”, Extrait de la
revue E (édition S.R.B.E), Vol. 5, No. 7, 1967.

• R. R. Booth, “Power System Simulation Model Based on Probability Analysis”, IEEE Transac-
tions on Power Apparatus & Systems, Vol. PAS-91, No. 1, January/February 1972.

• L. Söder & M. Amelin, “Efficient Operation and Planning of Power Systems”, course compen-
dium, Royal Institute of Technology (KTH), Stockholm 2003–2015.
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SOLUTIONS TO EXERCISES
2.1

a) All values between 10 and 20 are equally probable; thus, this is a heterogeneous population.

b) The values 10, 11, …, 20 are equally probable; thus, this is a heterogeneous population.

c) Only the values 10 and 20 are possible; however, the value 10 has a probability of 60%. Hence, this
random variable corresponds to a population where 60% of the units have the value 10 and the remain-
der of the units correspond to the value 20. Hence, this is a duogeneous population, where the units
with the value 10 are the conformist units and the other units are the diverging units.

d) All values between 10 and 20 are possible; however, the value 10 has a probability of 60%. Hence, this
random variable corresponds to a population where 60% of the units have the value 10 and the remain-
der of the units correspond to all values larger than 10 and smaller or equal to 20. Hence, this is a duo-
geneous population, where the units with the value 10 are the conformist units and the other units are
the diverging units.

e) All values between 10 and 20 are possible and although values between 10 and 12 are more probable
there is no particular value that is dominating, which means that we cannot identify a set of conformist
units. Hence, this is a heterogeneous population.

3.1

a) y =  = 4.

b) y =  = 4.

c) y =  = 6.

d) y =  = 10.

3.2

a) y =  = 2.

b) y =  = 3.25.

c) y =  = 5.15.

d) y =  = 7.1.
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1– 0.91 
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3.5

 can be calculated graphically as indicated in the figure below. The result is y1 = 0 and y2 = 0.

3.4

The inverse transform method can be applied to the joint distribution function, as shown in the figure
below. Using the first of the random values in table 3.4 gives the values y1 = 2 and y2 = 2. 

3.5

We start by transforming the first pseudorandom number into a value of Y1. The distribution function is
given by

FY1(x) = 

hence, y1 =  = 4.4. Given this result, the distribution function of Y2 is given by
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FY2(x | Y1 5) = 

Now, we get y2 =  = 6.0.

3.6

Let us start by randomising a value for the first input. To apply the inverse transform method, we need
the distribution function FY1(x1), which can be found by integrating the density function fY1(x1). To find
the density function of a single variable in a bivariate distribution, we need to compute

fY1(x1) = 

However, in this case the bivariate distribution is rather straightforward, and it is easy to see that all
states of Y1 in the interval (0, 5) are equally probable and the same goes for all states in the interval
(5, 10). We can also see that the total probability that Y1 < 5 is 40%, because

P(Y1 < 5) =  = 0.008 · 5 · 10 = 0.4.

This results in the distribution function shown below. Applying the inverse transform method on the
random number 0.22 results in the value y1 = 2.75. 

Now, we need the probability distribution of Y2 given that the outcome of the first variable is equal to
2.75, i.e. we need to compute

 = 

Fortunately, we may observe that fY(2.75, x2) has a constant value in the interval (0, 10) and is equal to
zero otherwise; hence, Y2 must be uniformly distributed between 0 and 10. Applying the inverse trans-
form method on the random number 0.64 then yields y1 = 6.4.

4.1

a) mX =  = 0.496.
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b)  = 0.258.

c) aX =  =   0.0458.

d) aX > 0.01  The stopping criteria is not fulfilled and the simulation should continue.

e)  =   {t0.95 = 1.9600}  0.045  0.496  0.045 is a 95% confidence interval for E[X].

4.2

a) mX =  = 200.

b)  = 0.

c) The estimated variance is equal to zero, which means that all the 100 collected samples produced the
same result. There are two possible explanations: either X is not random (and then there would not be
any point in sampling X) or X is duogeneous and only conformist units have been sampled so far. In the
latter case it is not appropriate to stop the simulation until some diverging units have been sampled. As
the coefficient of variation will be equal to zero when the estimated variance is zero—because aX =

—we need some additional criteria in the stopping rule, for example that sX > 0.

4.3

mX  , where  =  is a 95% confidence interval. If 0.1mX then we get

 0.1mX; 

hence

aX =  

Consequently,  = 0.1/1.9600 0.05 is an appropriate relative tolerance.

5.1

Symmetrical distribution  If Y = Y +  then Y* = Y – y* = 175.

5.2

Symmetrical distribution  If Y = Y +  then Y* = Y – y* = 68.

5.3

a) y =  = 9, y* =  = 3.

b) y =  = 2.4, y* =  = 9.3.

c) y =  = 6.2, y* =  = 7.8.
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5.4

The dagger cycle length is S = floor (1/p) = {p = 0.28} = 3 

 j = 1, 2, 3.

a) yj = 

b) yj = 

c) yj = 

5.5

a) Let ui, i = 1, …, 20 be twenty values from a pseudorandom number generator. Applying the inverse
transform method to the joint probability distribution, yi =  gives us 20 values of both inputs,
i.e., 20 scenarios. Hence, 20 values from the random number generator are needed.

b) Let ui, i = 1, …, 10 be ten values from a pseudorandom number generator, and let ui* = 1 – ui,
i = 1, …, 10. Applying the inverse transform method to the joint probability distribution, yi = 
and yi* =  gives us 20 values of both inputs, i.e., 20 scenarios. Hence, 10 values from the ran-
dom number generator are needed.

c) Each dagger cycle will require one value from the random number generator. The dagger cycles are
represented by rectangles in the figure below. As can be seen, there is a need for five dagger cycles in
total (three for input 1 and two for input 2). 

d) The shaded areas below are the part of the longer dagger cycle that is ignored when the dagger cycle
is reset. In this case, the total number of dagger cycles will be six (three for each input).

e) The shaded areas below are the part of the shorter dagger cycle that is ignored when the dagger cycle
is reset. In this case, the total number of dagger cycles will be six (four for input 1 and two for input 2).

5.6

a) In each trial there is an 85% probability that we get the value 1; hence, for six independent trials the
probability that the result is equal to one every time is 0.856  37.7%.

FYj
 x 

20

10

 if 0.28 j 1–  x 0.28j,  

otherwise,
=

FYj
 0.66 

10

10

20



 j 1,=

j 2,=

j 3.=

=

FYj
 0.85 

10

10

10



 j 1,=

j 2,=

j 3.=

=

FYj
 0.04 

20

10

10



 j 1,=

j 2,=

j 3.=

=

FY
1– ui 

FY
1– ui 

FY
1– ui* 

Scenario

6 7 8 9 101 2 3 4 5 11 12 13 14 15 16 17 18 19 20

Input
1

2

Scenario

6 7 8 9 101 2 3 4 5 11 12 13 14 15 16 17 18 19 20

Input
1

2

5.4-5.6 83



 

b) Three pseudorandom numbers are needed, and each time there will be a 70% probability that we get
the value 1 for both the original and complementary random number; hence, the probability that the
result is equal to one every time is 0.73 = 34.3%.

c) The dagger cycle length will be equal to six; hence, we will be generating exactly one dagger cycle and
the probability that we get only the result one is equal to the probability that the pseudorandom num-
ber falls within the rest interval, i.e., 10%.

5.7

a) The inverse distribution function is given by

It is then easy to see that all the random numbers in table 5.4 will be transformed into the value 1, i.e., yi
= 1, i = 1, …, 10.

b) Apply the inverse transform using only five values from table 5.4, ui, i = 1, …, 5, whereas the remain-
ing five values to be transformed are given by 1 – ui, i = 1, …, 5. The original values will be equal to 0 if ui
is less than 0.1, whereas the complementary random numbers will be equal to 0 if ui is larger than 0.9;
however, where are no such entries, which means that we will get yi = 1, i = 1, …, 10, in this case as well.

c) The dagger cycle length is given by S = floor (1/p) = {p = 0.1} = 10; thus, we will only need to generate
one dagger cycle (which means that we are only going to need one random number). The first value in
table 5.4 is 0.44, which points to the fifth interval, i.e., the condition p(j – 1)  x < p·j in the dagger trans-
form is fulfilled for j = 5. The resulting sequence is then that yi = 1, i = 1, …, 4, 6, …, 10 and y5 = 0.

d) With the inverse transform method and complementary random numbers, the value 1 does not
appear in the generated sequence, whereas for dagger sampling it appears in one out of ten scenarios,
which is exactly according to the actual probability distribution of Y. The result of dagger sampling is
not a coincidence, as there is no rest interval in the dagger transform and we are generating a complete
dagger cycle! For other pseudorandom numbers, the inverse transform method and complementary
random numbers could have generated one or more results where yi = 0. However, the probability of
getting the results in questions a and a are not insignificant (0.910  35% for the inverse transform
method and 0.85 33% for complementary random numbers).

5.8

In order to compute the estimate, we need to calculate the input density function  j = 1, 2, 3, the
importance sampling function  j = 1, 2, 3, and the output x for the five scenarios:

Then, E[X] is estimated by

Scenario w = x

1 0.9 0.6 0.9 0.6 0.9 0.6 3.375 0

2 0.1 0.4 0.9 0.6 0.9 0.6 0.5625 1

3 0.9 0.6 0.1 0.4 0.9 0.6 0.5625 0

4 0.9 0.6 0.9 0.6 0.9 0.6 3.375 0

5 0.9 0.6 0.9 0.6 0.1 0.4 0.5625 0
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6 7 8 9 101 2 3 4 5 11 12 13 14 15 16 17 18 19 20

Input

1

2

FY
1– 0

1

 if 0 x 0.1, 

if 0.1 x 1.
=

fYj yj ,
fZj yj ,

fY1 y1  fZ1 y1  fY2 y2  fZ2 y2  fY3 y3  fZ3 y3 
fY1 y1 fY2 y2 
fZ1 y1 fZ2 y2 
------------------------------------
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mX =  = 0.5625/5 = 0.1125.

5.9

The weight factors for the five scenarios are given by

wi =  = 

The estimated expectation value is then given by

mX =   103

and the estimated variance is 

  10 808.

5.10

The inputs have nine possible states, and the expectation value E[X] = X can be calculated by enumera-
tion:

X =  = … = 20,

where fY is the joint probability distribution of both inputs. Then, the importance sampling function
should be chosen as

fZ() = 

the resulting optimal importance function is computed in the table below:

5.11

Choose the importance sampling function 

Y1 Y2 fY X = g(Y1, Y2) fZ

0 0 0.05 0 0

0 5 0.15 5 0.0375

0 10 0.05 20 0.0500

5 0 0.10 5 0.0250

5 5 0.30 20 0.3000

5 10 0.10 30 0.1500

10 0 0.05 20 0.0500

10 5 0.15 30 0.2250

10 10 0.05 65 0.1625

1
5
--- wixi

i 1=

5



fY1 y1 i 
fZ1 y1 i 
---------------------

fY2 y2 i 
fZ2 y2 i 
---------------------

0.08

0.32

0.72

0.72

0.72





 i 1,=

i 2,=

i 3,=

i 4,=

i 5.=

1
5
--- wixi

i 1=

n



sX
2 1

5
--- wixi

2

i 1=

n


 
 
 

mX
2–=

fY i g i 
i 1=

9



g  fY  

X

--------------------------;
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fZ() = 

where

Z =  =  =  = 

= 0.625 + 3.750 + 3.750 = 8.125.

Hence, we get

fZ() = 

5.12

The expectation values of the simplified models are

Z1 =  = 400, Z2 =  = 0.1.

The optimal importance function for each output is then given by

fZ1() = 

fZ2() = 

A reasonable compromise of these two importance sampling functions is to use the average, i.e., 

fZ() = 

5.13

The importance sampling function resulting in the lowest value of Var[MX] will be the most efficient, as
the computation time is the same for both methods. The variance of the estimate is given by

g̃  fY  

Z

--------------------------,

E g̃ Y   fY x g̃ x  xd

–



 0.05x x 0.10x x 0.05 2x 10– 
10

15

+d

5

10

+d

0

5



0

0.05

8.125
------------

0.10

8.125
------------

0.05

8.125
------------ 2 10– 

0











  0,

0  5, 

5  10,

10  15,

15 .

fY  z1  
 1=

5

 fY  z2  
 1=

5



fY  z1  
Z1

----------------------------

0.0250

0.1125

0.3500

0.2875

0.2250

0









=

 1,=

 2,=

 3,=

 4,=

 5,=

all other ,

fY  z2  
Z2

----------------------------
1

0



=
 5,=

all other .

fZ1   fZ2  +

2
---------------------------------------

0.0125

0.0563

0.1750

0.1437

0.6125

0









=

 1,=

 2,=

 3,=

 4,=

 5,=

all other .
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Var[MX] = 

where Y is the set of possible input values. Enumeration of Y yields the following results:

Hence, the variances are given by

Var[MX]   (for the first method)

and

Var[MX]   (for the second method).

The true expectation value X does not depend on the importance sampling function; therefore, we can
conclude that the second method (i.e., using the importance sampling function fZ2) is more efficient.

5.14

a) First we estimate the expectation value for each stratum:

 = 

The estimate for the entire population is obtained by

mX =  = 440.

b) The estimated variance in each stratum is given by

 = = 

According to the Neyman allocation, the target distribution of 2 000 samples should be


g() fY() = fY1(y1)fY2(y2)fY3(y3) fZ() = fZ1(y1)fZ1(y2)fZ1(y3) fZ() = fZ2(y1)fZ2(y2)fZ2(y3)

y1 y2 y3

0 0 0 0 0.001 0.125 0.008

0 0 1 0 0.009 0.125 0.032

0 1 0 0 0.009 0.125 0.032

0 1 1 0 0.081 0.125 0.128

1 0 0 0 0.009 0.125 0.032

1 0 1 1 0.081 0.125 0.128

1 1 0 1 0.081 0.125 0.128

1 1 1 1 0.729 0.125 0.512

1
n
--- g2  

fY
2  

fZ  
-------------- X

2–
 Y


 
 
 

,

4.36 X
2–

n
-----------------------

1.14 X
2–

n
-----------------------

mXh
1
nh
----- xh i

i 1=

nh

=

200

500

550

1 000





 h 1,=

h 2,=

h 3,=

h 4.=

hmXh

h 1=

4



sXh
2 1

nh
----- xh i mXh– 2

i 1=

nh

=
1
nh
----- xh i

2 mXh
2–

i 1=

nh



1 000 000

2 250 000

3 062 500

250 000





 h 1,=

h 2,=

h 3,=

h 4.=
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nh
 =  = 

Considering the number of samples already collected from each stratum, 390 samples are needed from
stratum 1, as well as 320 samples from stratum 2, 260 samples from stratum 3 and 30 samples from stra-
tum 4.

5.15

According to the Neyman allocation, the target distribution of 200 samples is

nh
 =   

The first two strata have apparently been allocated too many samples already in the pilot study. Hence,
we should use a compromise allocation that allocates the next 100 samples to strata 3 and 4. We would
like to have 119 + 3 = 122 samples in strata 3 and 4 for the next batch. Consequently, 22/122 18% of the
samples cannot be collected. If this scarcity is shared by the two strata which need more samples, the
resulting allocation will be 3 samples from stratum 3 and 97 samples from stratum 4. (If rounded values
are used in these calculations—instead of the full precision of the calculator—the result can be 2 sam-
ples from stratum 3 and 98 from stratum 4.)

5.16

According to the Neyman allocation, the target distribution of 2 000 samples is

nh
 =  = 

for the first output, and

nh
 =  = 

for the second. Using the mean of these two distributions as a compromise allocation and taking into
account the scenarios that already have been generated, we should choose to generate 150 scenarios in
stratum 1, 500 scenarios in stratum 2, and 350 scenarios in stratum 3.

5.17

a) 1 = P(Y1  3) · P(Y2  3) = FY1(3) · (1 – FY2(3)) = 0.12. Similarly, 2 = (1 – FY1(3)) · (1 – FY2(3)) = 0.28,
3 = FY1(3) · FY2(3) = 0.18 and 4 = (1 – FY1(3)) · FY2(3) = 0.42.

b) We start by sorting out which scenario belongs to which stratum and then we calculate the estimated

n
hsXh

ksXk

k 1=

L



-------------------------

640

720

560

80





 h 1,=

h 2,=

h 3,=

h 4.=

n
hsXh

ksXk

k 1=

L



-------------------------

21

7

28

144





 h 1,=

h 2,=

h 3,=

h 4.=

n
hsXh

ksXk

k 1=

L



-------------------------

700

900

400



 h 1,=

h 2,=

h 3,=

n
hsXh

ksXk

k 1=

L



-------------------------

0

900

1 100



 h 1,=

h 2,=

h 3,=
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expectation value for each stratum. The result is as follows:

The estimate for the entire population is obtained by

mX =  = 8.324.

5.18

a) To determine the shape of the area we can investigate the share of points within the rectangle
1  Y1  5 and 0  Y2  5. The idea is to separate areas which are either clearly inside or clearly outside
the shape from areas which are both inside and outside the shape. One possible strata tree according to
this principle is shown below. The circles below each branch indicate the expected properties of the cor-
responding stratum.

b) Both inputs should be uniformly distributed; hence, the stratum weight will be equal to the size of
stratum divided by the size of the rectangle which comprises the sample space. Thus, we get the follow-
ing stratum weights:

1 = 1 · 3/20 = 0.15, 2 = 1 · 2/20 = 0.1, 3 = 2 · 1/20 = 0.1,

4 = 2 · 1/20 = 0.1, 5 = 2 · 3/20 = 0.3, 6 = 1 · 5/20 = 0.25.

5.19

a) We can use a strata tree to identify scenarios where Alice’s choice of route is easily predicted. We put
the situation (which in practice is an auxiliary input) on the first level below the root and the forecasted
travel time of route B on the second level, as in the figure below. In the first stratum, the forecasted
travel time of route A is always smaller than the forecasted travel time of route B; hence, Alice will
choose route A. This is also the case in the second stratum, but the difference is that in this case the
forecast is highly inaccurate and the resulting travel time will be much longer compared to the scenarios
in the first stratum. In the third and fifth strata, the forecasted travel time of route B is always smaller
then the forecast for route A, and Alice will go route B. In the remaining strata, Alice’s choice cannot be

Stratum, h Scenarios, i

Estimated expectation value, 

1 2, 4 7.1

2 5, 6, 8, 10 15.2

3 1, 3 2.7

4 7, 9 6.5

mXh
1
nh
----- xh i

i 1=

nh

=

hmXh

h 1=

4



Y2

Root

Y1 1  Y1 < 2

0  Y2 < 3 3  Y2  5

2  Y1 < 4 4  Y1  5

0  Y2 < 1 1  Y2 < 2 2  Y2  5 0  Y2  5

h 1 2 3 4 5 6
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predicted.1.

b) The expectation values of strata 1, 2, 3 and 5 can be computed analytically. For example, in stratum 1
we know that Alice will choose route A and that the expected real travel time is 35 minutes. Similarly, in
stratum 3 Alice will go route B and the expected real travel time will then be 60 minutes (the real travel
time on route B is independent of the forecast and will consequently be U(45, 75)-distributed regardless
of whether or not the forecasted travel time is less than 60 minutes).

This means that there are only two strata, where the expectation value need to be estimated. A rea-
sonable solution is to allocate the same amount of scenarios in the pilot study to each stratum, i.e., 50
scenarios should be generated in stratum 4 and another 50 scenarios should be generated in stratum 6.

5.20

a) Before we can investigate the variances of the two estimates, we need the properties of the variables
to be sampled:

X =  = 2.87,

 = 5.13,

X1 =  = 10,  = 10,

X2 =  = 2.8,  = 4.56.

We also need the stratum weights:

1 = P(Y2 = 0) = fY2(0) = 0.01, 2 = P(Y2 = 2) = fY2(2) = 0.99.

The variance of the estimate when using simple sampling would be

Var[MX] = 

This should be compared to the variance of the estimate when using stratified sampling, which is given
by

Var[MX] =  

1. It could be noted that strata 4 and 6 could be further divided to identify scenarios where the forecasted
travel time on route A is larger than 75, in which case we know that Alice will choose route B. However,
this strata tree is sufficient for this problem.

Forecasted travel time B

Root

45–75

h 1

Forecasted travel time A
Real travel time A

30–40
30–40

45–75 < 60  60 < 60  60

2

Chosen route

30–40
60–90

60–90
30–40

60–90
60–90

3 4 5 6

A A B A or B B A or B

fY1 x1 fY2 x2 g x1 x2 
x2


x1



X
2 fY1 x1 fY2 x2  g x1 x2  X– 2

x2


x1

=

fY1 x1 g x1 0 
x1

 X1
2 fY1 x1  g x1 0  X1– 2

x1

=

fY1 x1 g x1 2 
x1

 X2
2 fY1 x1  g x1 2  X2– 2

x1

=

X
2

n
------- 5.13

n
---------- .=

h
2
Xh

2

n 2
----------

h 1=

2


2 0.012 10 2 0.992 4.56 + 

n
------------------------------------------------------------------------ 8.94

n
---------- .= =
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Assuming that the differences in computation time are negligible, the variance of the estimate is lower
for simple sampling; hence, this application of stratified sampling was not efficient.

b) The efficiency of stratified sampling can be improved by changing the strata definition (so that strata
are more homogenous) or by applying the Neyman allocation instead of proportional sampling.

5.21

We start by calculating the estimated difference between the detailed model and the control variate for
each stratum:

m(X – Z)h = 

Then we calculate the estimated difference between the detailed model and the control variate for the
entire population:

m(X – Z) =  = 3.625.

Finally, we add the expectation value of the control variate to get the estimated expectation value of the
detailed model:

mX = m(X – Z) + Z = 12.625.

5.22

The variable to be studied is the difference X1 – X2. However, since importance sampling is used, each
sample should be multiplied by the weight factor. This produces two estimates

m(X1 – X2), 1 = 

and

m(X1 – X2), 2 = 

The final estimate is the mean of these two, i.e.,

m(X1 – X2) =  =

=  = 

= (50 300 + 49 600 – 49 100 – 48 800)/1 000 = 2 000/1 000 = 2.

5.23

We start by calculating the estimated expectation value for each stratum:

mX h = 

1
200
--------- xh i xh i *+  zh i zh i *+ – 

i 1=

h


1.25

4.5

8.25





=

h 1,=

h 2,=

h 3.=

hm X Z– h
h 1=

3



1
500
--------- wi x1 i x2 i– 

i 1=

500



1
500
--------- wi* x1 i * x2 i *– .

i 1=

500



1
1 000
--------------- wi x1 i x2 i–  w+

i
* x1 i * x2 i *–  

i 1=

500



1
1 000
--------------- wix1 i

i 1=

500

 wi*x1 i * wix2 i
i 1=

500

– wi*x2 i *
i 1=

500

–

i 1=

500

+
 
 
 

1
nh
-----

fY yh i 
fZ yh i 
------------------g yh i 

fY yh i * 
fZ yh i * 
----------------------g yh i * + 

 

i 1=

nh 2


16

21

34





=

h 1,=

h 2,=

h 3.=
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Then we calculate the estimate for the entire population:

mX =  = 21.1.

5.24

The results for the ten scenarios are given in the table below.

The expected difference between the two systems is estimated by

m(X2 – X1) = 

In this case, the difference g2(zi) – g1(zi) is equal to zero for all scenarios except the eighth, i.e., 

m(X2 – X1) =  =  = 0.007.

Scenario 1 2 3 4 5 6 7 8 9 10

g1(z) 1 1 1 1 1 1 1 0 1 1

g2(z) 1 1 1 1 1 1 1 1 1 1

hmXh

h 1=

3



1
n
--- w zi  g2 zi  g1 zi – .

i 1=

n



1
10
------w z8  1

10
------

0.9

0.9
------- 0.9

0.9
------- 0.9

0.5
------- 0.1

0.5
------- 0.1

0.5
------- 0.9

0.9
-------     

 
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